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ABSTRACT

The rapid revolution in microprocessor chip architecture due to the many-core tech-

nology is presenting unprecedented challenges to the application developers as well

as system software designers: how to best exploit the computation potential pro-

vided by such many-core architectures?

The scope of this dissertation is to study programming issues for many-core archi-

tectures, and the contributions of this dissertation are in two main areas.

Optimizing the Fast Fourier Transform for IBM Cyclops-64

To understand issues in designing and developing high-performance algorithms for

many-core architectures, we use the fast Fourier transform (FFT) as a case study

to investigate the above issues on the IBM Cyclops-64 many-core chip architecture.

We analyze the optimization challenges and opportunities for FFT problems, and

identify domain-specific features of the target problems and match them well with

some key many-core architecture features. We quantitatively address the impacts of

various optimization techniques and effectiveness of the target architecture. The re-

sulting FFT implementations achieve excellent performance results in terms of both

speedup and absolute performance. To assist the algorithm design and performance

analysis, we present a model that estimates the performance of parallel FFT algo-

rithms for an abstract many-core architecture. This abstract architecture captures

generic features and parameters of several real many-core architectures; therefore

the performance model is applicable for any architecture with similar features. We

derive the performance model based on cost functions for three main components of

an execution: the memory accesses, the computation, and the synchronization. The

xv



experimental results demonstrate that our model can predict the performance trend

accurately, and therefore can provides valuable insights for designing and tuning

FFT algorithms on many-core architectures.

Exploring Fine-grained Task-based Execution on Graphics Processing

Unit-enabled Systems

Using many-core Graphics Processing Unit (GPU) is gaining popularity in scientific

computing. However, the conventional data parallel GPU programming paradigms,

e.g., NVIDIA CUDA, cannot satisfactorily address certain issues, such as load bal-

ancing, GPU resource utilization, overlapping fine-grained computation with com-

munication, etc. The problem is exacerbated when trying to effectively exploit mul-

tiple GPUs concurrently, which are commonly available in many modern systems.

Our solution to this problem is a fine-grained task-based execution framework for

GPU-enabled systems. Our framework allows concurrent execution of fine-grained

tasks on GPU-enabled systems. The granularity of task execution is finer than what

is currently supported in CUDA; the execution of a task only requires a subset of the

GPU hardware resources. Our framework provides means for solving the above is-

sues and efficiently utilizing the computation power provided by the GPUs. We eval-

uate our approach using both micro-benchmarks and a molecular dynamics (MD)

application that exhibits significant load imbalance. Experimental results with a

single-GPU configuration show that our fine-grained task-based solution can utilize

the hardware more efficiently than the CUDA scheduler for unbalanced workload.

On multi-GPU systems, our solution achieves near-linear speedup, good dynamic

load balance, and significant performance improvement over other techniques based

on standard CUDA APIs.
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Chapter 1

INTRODUCTION

Traditionally, scientists employ both experimental and theoretical approaches

to solve problems in the fields of science and engineering, such as astronomy, biology,

chemistry, physics, etc. With the advent of computer machinery, scientists have been

able to transform a theory or a realistic phenomena into an algorithm, analyze and

understand the problem through computing and simulations. As a matter of fact,

the use of computation and simulation has now become so prevalent and essential a

part of the scientific process that many people believe that the scientific paradigm

has been extended to include simulation as an additional dimension [90]. On the

other hand, as the workhorse, computing systems have been playing a critical role for

scientific computing, and hardware advances have allowed scientists to investigate

problems in greater detail and more complex systems than previous generations of

hardware did.

Currently, the computer industry is at a major inflection point in its hardware

roadmap due to the end of a decades-long trend of exponentially increasing clock

frequencies. As the traditional single-core processor architectures are no longer able

to take advantage of the integrated circuit (IC) technology advances due to some

fundamental issues, i.e., power consumption, heat dissipation, memory wall, etc.,

computer architects look for other ways to utilize the transistor budget. By in-

tegrating a number of simple processors/cores on a single die, it is believed that

this many-core chip technology has higher power-efficiency, improved heat dissipa-

tion, better memory latency tolerance, and many other benefits. Projections and

1



early prototypes indicate that in the very near future dozens, if not hundreds, of

general-purpose and/or special-purpose cores will be included on a single chip. Many

researchers think that many-core architectures are going to become the mainstream

for the parallel computing in the future. However, unlike previous hardware evolu-

tions, this shift in the hardware roadmap will have a profound impact on scientific

computing community by posing unprecedented challenges in the management of

parallelism, locality, scalability, load balance, energy, fault-tolerance, etc. It is an

open question whether the existing parallel programming approaches will continue

to scale to future computing systems built with many-core chips.

1.1 Scientific Computing

Scientific computing is the field of study “concerned with constructing math-

ematical models and quantitative analysis techniques and using computers to ana-

lyze and solve problems in science and engineering domains” [154], such as climate

prediction, materials science, structural biology, superconductivity, semiconductor

design, drug design, human genome, quantum chromodynamics, turbulence, speech

and vision, relativistic astrophysics, vehicle dynamics, nuclear fusion, combustion

systems, oil and gas recovery, ocean science, vehicle signature, undersea surveil-

lance [90], etc. Algorithms and mathematical methods used in scientific computing

varies from one domain to another domain. Some commonly applied algorithmic

methods include numerical analysis, molecular dynamics, numerical linear algebra,

discrete Fourier transform, Gaussian elimination, Cholesky factorizations, Newton’s

method, Monte Carlo method, etc.

Scientific computing is typically of the form of various computer simulations

or computations in different scientific disciplines. Such simulation/computation

normally requires massive amounts of calculations that are impossible or very costly

2



to observe through empirical means. For example, the National Oceanic and Atmo-

spheric Administration of United States Department of Commerce uses supercom-

puters for weather and climate prediction. The primary system processes billions of

bytes of weather observation data everyday, and it can perform 69.7 trillion calcula-

tions per second [110], which would take a person millions of years to process with

a calculator.

On the other hand, advances in scientific modeling activities lead to an ever

increasing performance demand. For instance, molecular dynamics (MD) [55] simu-

lations are used in the fields of biology, chemistry, and medicine to model the motions

of molecular systems, including proteins, cell membranes, and deoxyribonucleic acid

(DNA), at an atomic level of detail. Early MD simulations were carried out for small

systems; a MD simulation in 1977 was conducted with a size of only 500 atoms and

a simulation time of 9.2×10−12 second [96]. Because long, accurate MD simulations

could in principle provide answers to some of the most important outstanding ques-

tions, the state-of-the-art MD simulations usually work on systems of very large size

and very long simulation times. For example, in 2006, a simulation of the complete

satellite tobacco mosaic virus was conducted with a size of 1, 000, 000 atoms, and

a simulation time of 5.0 × 10−8 second [54]. Advances in hardware capability en-

able investigating larger systems and more application functionalities, which grow

in significance and place even greater demands on performance. For example, many

of the most important biological processes occur over timescales on the order of a

millisecond [129]. However, due to the limitation of the current technology, the vast

majority of MD simulations have been limited to the nanosecond timescale.

1.2 Architecture Shift: from Single-core to Multi-core/Many-core

In 1965, Gordon Moore predicted that the transistor density of semiconduc-

tor chips would double approximately every 18 to 24 months, which is known as

Moore’s law [98]. It predicted computers would not only have more transistors
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but also faster transistors. Many people misinterpret Moore’s law as a predictor

of central processor unit (CPU) clock frequency, the most commonly used metric

in measuring computing performance. Indeed, the processor frequency of the tra-

ditional single-core processor has followed Moore’s law for 40 years. This made it

relatively easy to improve the performance of the traditional software, including the

scientific computer applications. Most users just simply relied on the increasing ca-

pabilities and speed of single-core processors to get free performance improvement.

However, this frequency increase could no longer be sustained due to the following

problems.

• The single most important problem is the increasing power density, which

is an unsolvable problem for conventional single-core processor designs. The

number of transistors per chip has greatly increased in recent years, each of

these transistors consumes power and produces heat. If this rate continued,

processors would soon be producing more heat per square centimeter than the

surface of the sun [59]. This is so-called Power Wall. Because of this, several

of the next generation processors, such as the Tejas Pentium 4 processor from

Intel, were canceled or redefined due to power consumption issues [156].

• Memory speeds are not increasing as quickly as processor speeds. These di-

verging rates imply an impending Memory Wall, in which memory accesses

dominate code performance. These wasted clock cycles can nullify the benefits

of frequency increases in the processor.

• Advances in IC technology allow the hardware feature size to continue drop-

ping. As feature size drops, interconnect delay often exceeds gate delay and

becomes the most serious performance problem to be solved in future IC de-

sign, and it can eventually cancel the speed increases of the transistors.
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• Most single-core processors are designed to exploit the instruction level par-

allelism (ILP) in programs. ILP approaches could overlap the execution of

instructions and improve performance without affecting the standard single-

core processor programming model. While exploiting ILP was the primary

focus of processor designs for a long time, however, ILP can be quite limited

or hard to exploit in many applications [72], which is known as ILP Wall.

Meanwhile, the higher level parallelisms, i.e., thread-level parallelism (TLP)

and data-level parallelism (DLP), occurring naturally in a large number of

applications cannot be exploited with the ILP approach.

Because of limits described above, the era of taking advantage of Moore’s

law on the traditional single-core processor designs appeared to be coming to an

end. Since 2005, the computing industry changed course when all major processor

manufacturers, such as Intel, IBM, Sun, AMD, turned to multi-core designs, where

a number of simple cores are integrated on a single die [8, 21, 34, 39, 78, 80, 88, 95].

The multi-core architectures are believed to be able to extend the benefits of Moore’s

law by doubling the number of standard cores per die with every semiconductor

process generation starting with a single-core processor.

There are many advantages to building multi-core processors out of smaller

and simpler cores:

• Since the power consumption of a single core drops significantly with the

reduction in frequency, multi-core architectures can provide a power-efficient

way to achieve performance by running multiple cores with moderate clock

rate [30, 134].

• A small core is an economical element that is easy to shut down and recon-

figure, which allows a finer-grained ability to control the overall power and

performance.
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• Multi-core architectures partition resources, including memory, into individual

small parts, and thus alleviate the effect of the interconnect delay and reduce

contention on a shared global memory. The availability of local storage on

each core serves to reduce contention on a globally shared main memory, and

if data is distributed adequately among the cores, there is an effective increase

in overall concurrency.

• Multi-core chip architectures naturally support thread-level parallelism, which

is expected to be exploited in future applications and multiprocessor-aware

operating systems and environments [70].

• A small and simple processing element of a processor is easy to design and

functionally verify. In particular, it is more amenable to formal verification

techniques than complex architectures with out-of-order execution.

• Performance and power characteristics of smaller hardware modules are easier

to predict within existing electronic automation-design flows [138].

While the multi-core processors, like dual-core, quad-core, even hexa-core

microprocessors, have been released into the market of servers and personal com-

puters, both the industry and academia are actively exploiting the design space of

the many-core architectures by integrating an even larger number of cores (tens or

hundreds) into a single chip. Examples include Intel teraflops research chip [149] and

Single-chip Cloud Computer [81], IBM Cyclops-64 chip architecture [43], NVIDIA

CUDA [108], ATI Stream [6], ClearSpeed CSX700 [34], Tilera [145], Berkeley RAMP

Gold [141], MIT RAW [142] and ATAC [89], Stanford SmartMemories [127], etc.

Researchers also predicted that 1000-core chip would be achieved when 30nm tech-

nology is available [9].
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1.3 Challenges for Programming Many-core

While these many-core architectures provide high theoretic performance, such

increase of performance cannot be harnessed as simply as what we did with single-

core processors. The majority of software community was very used to the idea

of gaining increased performance by upgrading machines with a faster processor.

Unfortunately this kind of automatic improvement will not be possible when one

upgrades to a many-core computer. Although a many-core chip can run multiple

programs simultaneously, it does not complete a given program in less time, or finish

a larger program in a given amount of time, without extraordinary effort. The

problem is that most programs are written in sequential programming languages,

and these programs must be modified and optimized to exploit possible performance

gains enabled by certain hardware features.

For the first time, many-core architectures demand that the mainstream soft-

ware community engages in parallel processing, which until now was reserved for

the rarefied field of supercomputing. On the other hand, this shift in the hardware

roadmap poses unprecedented challenges to the software development community.

For example, the programmer will be faced with the scalability challenge of express-

ing, coordinating and exploiting multi-level parallelism provided by the many-core

systems. The programmer will also be faced with the locality challenge of optimizing

data movement in a highly non-uniform (explicitly managed) memory hierarchy with

order-of-magnitude gaps that separate data accesses to core-local memory, on-chip

global memory, and intra-node off-chip memory, and communications with remote

nodes. While to exploit architectural features and eventually obtain the desired per-

formance is the ultimate goal for programmers of this many-core era, no consensus

has been reached on how to do so.

On the other hand, people have been doing parallel programming for many

years on vector machines, clusters, SMPs, etc. Different approaches have been
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proposed and utilized. Here we present a brief review of these parallel programming

approaches, and point out their ineffectiveness in this many-core era.

1.3.1 Explicit Threading

Explicit threading approach includes POSIX threads (Pthreads) [4], Sun So-

laris threads, Windows threads, and other native threading application programming

interfaces (APIs). It is primarily designed to express the natural concurrency that

is present in most applications, and to improve the performance and responsibility.

This approach usually offers a comprehensive set of routines to provide a fine-grain

control over threading operations, such as create, manage, synchronize threads, etc.

Programmers control the application by explicitly call these routines. In the situa-

tions where threads have to be individually managed, this approach would be the

more natural choice. By devoting sufficient time and effort, programmers may be

able to parallelize the problem and achieve good performance.

However, because explicit threading is an inherently low-level API that

mostly requires multiple steps to perform simple threading tasks, it demands con-

siderable effort from the programmer’s side. Also, this approach does not offer

encapsulation or modularity. Therefore, manually managing hundreds or thousands

threads definitely would be a nightmare for the vast majority of programmers. Due

to this reason, developers have been increasingly looking for other simpler alterna-

tives.

1.3.2 OpenMP

Jointly defined by a group of major computer hardware and software vendors,

OpenMP [2] is a specification for a set of compiler directives, library routines, and

environment variables that can be used to specify shared memory parallelism in

Fortran and C/C++ programs. It gives programmers a simple and effective interface

for developing parallel applications on shared-memory systems.
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OpenMP uses a fork-join model of parallel execution, which is illustrated in

Figure 1.1. In an OpenMP program, the programmer has to explicitly specify the

start and end of each parallel region with OpenMP APIs. All OpenMP programs

begin with a single master thread. At first this master thread executes sequentially.

When the master thread encounters a parallel region construct, it creates (fork) a set

of parallel working threads. Then statements in that parallel region construct are

then executed by all threads in parallel. When all threads finish the corresponding

execution in that parallel region construct, they synchronize and terminate (join),

except the master thread continuing.

Figure 1.1: OpenMP Fork-Join Model

For applications that are characterized by easy data decomposition and sim-

ple thread orchestration, OpenMP is usually a simple and sufficient way for paral-

lelizing programs. Because of this, OpenMP has become a very successful model

for developing shared-memory parallel applications, especially for conventional sym-

metric multiprocessors (SMPs) [15, 82, 124].

If we simply treat many-core chips as SMPs, OpenMP could become a promis-

ing choice. However, it is important to recognize that OpenMP does have several

weaknesses for programming many-core chips.
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• OpenMP is not meant for non-shared memory systems by itself. This excludes

the possibility of directly utilize OpenMP on a large number of parallel sys-

tems. Many scientific computing systems consist of a large number of many-

core chips, and thus have a hierarchical architecture of both shared memory

space (within one chip) and distributed resources (across chips). OpenMP

alone will not be sufficient to handle this situation. On the surface, a hybrid-

programming model (by mixing shared memory inside the node and message

passing between the nodes) seems to be intuitive. However, most attempts

do not achieve the performance of the equivalent message passing codes (or a

share memory codes) [25, 26, 74, 128]. Also, it is not clear how to smoothly

make the interaction between different programming models [32, 131].

• OpenMP does not guarantee to make the most efficient use of hardware re-

sources. This may introduce some crucial issues for utilizing many-core ar-

chitectures. In particular, many-core architectures usually offer unique capa-

bilities that are fundamentally different from SMPs, which present significant

new opportunities. For example, the peak bandwidth between two processors

is 780 MB/s for a SGI SMP machine, Origin2000 [38], while it is 4 GB/s for the

IBM Cyclops-64 many-core chip architecture[44]. Such huge on-chip inter-core

communication bandwidth on a many-core chip is many times greater than is

typical for an SMP, to the point where it is less likely to be a performance

bottleneck. Inter-core latencies also are far less than are typical for an SMP

system. If we simply treat many-core chips as traditional SMPs, then we may

miss some very important opportunities for new architectures and algorithm

designs that can exploit these new features.

• OpenMP doest not guarantee code correctness. It is the programmer’s respon-

sibility to make sure the resulting code is correct, free of threading problems,

like data dependencies, race conditions, deadlocks, etc.
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• OpenMP has its major strength on loop optimizations; loops can be paral-

lelized easily with OpenMP. However, for other forms of parallel structures,

for example, event-driven tasks, the possibility that the opportunity for par-

allel loop threads is limited.

1.3.3 Message Passing

Message passing paradigm is the main alternative to shared data processing.

In a message passing program, processes do not communicate implicitly through

shared data; they send and receive explicit data messages. The message processing

model consists of a set of processes that have only local memory but are able to

communicate by message passing primitives.

The message passing model has gained wide use in the field of parallel com-

puting due to several advantages.

• The message passing model naturally fits on parallel supercomputers and clus-

ters of workstations, where separate processors are connected by a communi-

cations network. But this does not necessarily limit message passing to the

domain of distributed memory architectures: it can run on shared memory

systems as well.

• Message passing offers a rich set of functions for constructing parallel algo-

rithms.

• By giving programmer explicit control of data locality, message passing usually

can achieve an effective use of the memory hierarchy of modern architectures,

thus achieve a satisfied performance.

The message passing programming model has been effectively standardized by Mes-

sage Passing Interface (MPI) [3]. It is portable, stable, widely available,and it has

become the de facto standard for writing parallel programs on distributed systems.
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However, MPI was designed for communication between computers over net-

works and incurs too much protocol overhead and wastes the extremely low inter-

core latency that many-core offers. Moreover, MPI does not address support for dis-

tributed data structures. In this many-core era, the aforementioned locality problem

is aggravated; programmers have to explicitly deal with decomposing data, mapping

tasks, and performing synchronization, the massively increasing number of cores of

deep memory hierarchy may introduce additional challenges to programmers. To

this end, some researchers argue that MPI model has fundamental flaw that may

not survive as a viable parallel programming model for future many-core systems

[159].

Due to the above issues, while the majority of the software community be-

lieves that many-core processors are going to become the mainstream in the future,

people have not yet reached (or even come close to reaching) a consensus on how to

efficiently and effectively exploit the performance potential of those architectures.

1.4 Contributions

Programming many-core systems is a new area; no general model exists that

can be used to verify the performance of the algorithms/applications/methodologies

developed before they are implemented. It is thus the goal of this dissertation to

use case studies to understand issues in designing and developing scalable, high-

performance scientific computing algorithms for many-core architectures, get in-

depth experience on programming and optimizing applications on those architec-

tures, and then provide insights into implementation effort and performance behav-

ior of optimizations and algorithmic properties for many-core architectures.

In this dissertation, we investigate the following two problem/architecture

combinations as case studies,

• Fast Fourier Transform on IBM Cyclops-64. Fast Fourier Transform
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(FFT) [35] is an efficient algorithm to compute the discrete Fourier trans-

form (DFT) and its inverse. FFT is of great use across a large number

of fields, like spectral analysis, data compression, partial differential equa-

tions, polynomial multiplication, multiplication of large integers [36, 94], etc.

The IBM Cyclops-64 (C64) chip employs the many-core design by integrat-

ing 160 general-purpose processing elements, same number of memory banks,

and a crossbar on a single chip. A C64 chip features massively on-chip paral-

lelism, massive on-chip memory bandwidth, a large register file for each thread

unit and an explicitly managed multiple level memory hierarchy without data

cache.

• Molecular Dynamics on NVIDIA CUDA. Molecular dynamics (MD) [55]

is a simulation method in which atoms and molecules are allowed to interact

for a period of time by approximations of known physics, giving a view of

the motion of the particles. This kind of simulation is frequently used in

the fields of biology, chemistry, and medicine, as well as in materials sci-

ence, to allow scientists to study the motion of individual atoms in a way

which is not possible in traditional laboratory experiments. CUDA stands

for Compute Unified Device Architecture, a parallel architecture developed by

NVIDIA for general purpose parallel computing. CUDA devices have one or

multiple streaming multiprocessors, each of which consists of one instruction

issue unit, eight scalar processor cores, and two transcendental function units.

CUDA architecture features both on-chip memory and off-chip memory. Un-

like general-purpose CPUs, CUDA is a throughput-oriented architecture that

emphasizes executing many concurrent threads slowly, rather than executing

a single thread very fast.

FFT and MD were chosen because they represent commonly used techniques
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in a wide variety of scientific applications and have performance characteristics typ-

ical of many scientific applications. In addition, they have small code segments

whose behavior we can understand and directly track to specific architectural char-

acteristics. Each aforementioned application has certain unique characteristics, and

consequently, each algorithm has to be designed and according to the features the

problem dictates. Determining parallelism, problem decomposition, runtime load

balancing, scalability, and performance analysis are important issues that are con-

sidered.

Accordingly, the main contributions of this dissertation are summarized in

two main areas as follows,

• Optimizing the Fast Fourier Transform for IBM Cyclops-64

1. We design and implement scalable high-performance parallel FFT algo-

rithms for the C64 architecture. We analyze the optimization challenges

and opportunities for FFT problems, and identify domain-specific fea-

tures of the target problems and match them well with some key many-

core architecture features. The impacts of various optimization tech-

niques and effectiveness of the target architecture are addressed quan-

titatively. The optimization procedure, together with the experimental

results, provides valuable information for compilation optimizations and

algorithm design and optimization for many-core architectures.

2. We propose a performance model that estimates the performance of par-

allel FFT algorithms for an abstract many-core architecture, which cap-

tures generic features and parameters of several real many-core architec-

tures. It is therefore applicable for any architecture with similar features.

We derive the performance model based on cost functions for three main

components of an execution: the memory accesses, the computation, and

the synchronization. We estimate the memory access delay by jointly
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considering the memory access pattern of an FFT algorithm and the ar-

chitecture configuration; we estimate the computation time by simulating

the execution of the computation kernel; we estimate the synchroniza-

tion cost via an experiment-based approach. This performance model

provides valuable insights for designing FFT algorithms on many-core

systems, and tuning them to achieve the maximum performance.

3. We evaluate our performance model on the C64 architecture. Experimen-

tal results from both simulations and the executions on the real hardware

have verified the effectiveness of our performance model; our model can

predict the performance trend accurately. The experimental results also

reveal that the memory access delay has a crucial impact on performance

of a parallel FFT algorithm for many-core architectures. Therefore pro-

grammers are suggested to optimize use of local memory and higher radix

algorithms to reduce memory traffic requirements.

• Exploring Fine-grained Task-based Execution on Graphics Process-

ing Unit-enabled Systems

1. We propose a fine-grained, task-based execution framework for systems

equipped with graphics processing units (GPUs). The framework al-

lows computation tasks to be executed at a finer granularity than what

is supported in existing GPU APIs such as NVIDIA CUDA. This fine-

grained approach is particularly attractive because of the following rea-

sons. First, this fine-grained scheme is expected to utilize the hardware

more efficiently than the CUDA scheduler for unbalanced workload on

single-GPU systems. Second, it provides means for achieving efficient,

and dynamic load balancing on multi-GPU systems. While scheduling

fine-grained tasks enables good load balancing among multiple GPUs,
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concurrent execution of multiple tasks on each single GPU solves the

hardware underutilization issue when tasks are small. Third, since our ap-

proach allows the overlapping executions of homogeneous/heterogeneous

tasks, the programmers will have the flexibility to arrange their applica-

tions with fine-grained tasks and apply dataflow-like solutions to increase

the efficiency of the program execution.

2. We implement our framework with CUDA. We evaluate the performance

of the basic operations of this implementation with micro-benchmarks.

3. We evaluate the solutions based on our framework with a MD application.

Experimental results with a single-GPU configuration show that our solu-

tions can utilize the hardware more efficiently than the CUDA scheduler,

for unbalanced problems. For multi-GPU configurations, our solutions

achieve nearly linear speedup, load balance, and significant performance

improvement over alternative implementations based on the canonical

CUDA paradigm. Performance analyses reveal that the interaction be-

tween the task execution granularity and the particular algorithm can

lead to significant impact upon the performance.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 gives a brief

introduction of the C64 architecture and its system software infrastructure. Chapter

3 presents the background knowledge of FFT. Chapter 4 presents parallel 1D and

2D FFT algorithms that are optimized for the C64 chip architecture with detailed

performance analyses. Chapter 5 presents a model for performance prediction of

parallel FFT algorithms for an abstract many-core architecture, and its evaluation

with the C64 architecture. Chapter 6 gives a brief introduction of the NVIDIA
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CUDA architecture. Chapter 7 presents the background knowledge of MD simula-

tions. Chapter 8 presents our fine-grained task-based framework for GPU-enabled

systems. Chapter 9 evaluates the solutions based on our framework with micro-

benchmarks and a MD application. Chapter 10 concludes this dissertation with

future work.
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PART I

OPTIMIZING THE FAST FOURIER TRANSFORM FOR

IBM CYCLOPS-64
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Chapter 2

IBM CYCLOPS-64

Cyclops-64 (C64) is a petaflop supercomputer project under development at

IBM Research Center. C64 is designed to serve as a dedicated compute engine

for running high performance applications. Using a cellular organization, a C64

petaflop machine consists of thousands of C64 many-core chips connected through

a 3D-mesh network.

2.1 C64 Chip Architecture

The C64 chip, shown in figure 2.1, is the core computation engine of the C64

supercomputer system. One C64 chip features massive parallelism with 80 64-bit

processors, each consisting two thread units (TUs), two 32KB SRAM banks, and

one floating-point unit (FPU). Each thread unit is a single-issue, in-order RISC

processor operating at a moderate clock rate (500MHz). Therefore, a C64 chip

contains 160 processing elements.

Other on-chip components include 16 shared instruction caches (each is

shared by 5 processors), 4 off-chip DRAM controllers, A-Switch, and etc. All on-chip

resources are connected to an on-chip pipelined crossbar network with a large num-

ber of ports (96× 96), which sustains a 4GB/s bandwidth per port, thus 384GB/s

in total. The Instruction Set Architecture (ISA) of C64 supports Floating Multiply-

Add instructions, which can be issued at every cycle. Therefore, the theoretical peak

performance of a C64 chip is 80Gflops.
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Figure 2.1: Cyclops-64 Chip Architecture

Courtesy: This figure was first created by Alban Douillet and then successively revised by Juan del Cuvillo and the

author of this dissertation.

The C64 architecture has a segmented memory space, including the scratch-

pad memory (SPM), on-chip global interleaved memory (GM), and off-chip DRAM.

It is interesting to note that C64 does not have data cache. Instead, the on-chip

SRAM banks are partitioned into the SPM and GM. Both the SPM and GM are

globally addressable through the crossbar network by all TUs. While the GM are

accessible among all threads on the chip of a uniform latency, the SPM is regarded as

the fast local memory of the corresponding thread unit. Figure 2.2 shows the latency

and bandwidth for accessing different segments in the C64 memory hierarchy.

An important property of the crossbar switch is that memory access instruc-

tions issued by one TU to any on-chip GM bank, or off-chip DRAM bank, experience

the same latency in the crossbar. This equal-latency property makes the on-chip

memory model as sequential consistency [160], which implies that no memory fence

instruction is required to enforce ordering relation between memory accesses.
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Figure 2.2: Cyclops-64 Memory Hierarchy

All thread units within a chip are connected by a 16-bit wide signal bus,

which provides a means to efficiently implement barriers. Furthermore, the C64

ISA features a large number of atomic in-memory instructions. All these greatly

facilitate the thread-level parallelism with fast inter-thread synchronizations. C64

provides no hardware support for context switch, and uses a non-preemptive thread

execution model.

2.2 System Software

Figure 2.3 shows the C64 system software toolchain [41], which is used for

software and application development on the C64 system. The toolchain consists of

following basic components:

• Binary utilities (binutils): C64 assembler, linker, and objdump, etc. The

binutils is ported from GNU binutils-2.11.2 [61].
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Figure 2.3: Cyclops-64 System Software Toolchain

• GNU CC compilers: C and Fortran compilers, which are ported from GCC-

3.2.3/GCC-4.0.0/GCC-4.1.1 suite [60]. To fully exploit the explicitly address-

able multi-layered memory hierarchy of C64, the compiler, assembler, and

linker are enhanced to support segmented memory spaces that are not con-

tiguous. In other words, multiple sections of code, initialized and uninitialized

data can be allocated on different memory regions.

• FAST simulator: FAST stands for Functionally Accurate Simulator Toolset

[40]. It is an execution-driven, binary-compatible simulator of a multi-chip
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Table 2.1: FAST Simulation Parameters

Component # of units Params./unit
Threads 160 single in-order issue,

500MHz
FPUs 80 floating point/MAC,

divide/square root
I-cache 16 32KB
SRAM (on-chip) 160 32KB
DRAM (off-chip) 4 256MB
Crossbar 1 96 ports, 4GB/s port
A-switch 1 6 ports, 4GB/s port

multithreaded C64 system. Before the actual C64 chip is available, the devel-

opment and research of system software and scientific and engineering applica-

tions are conducted on FAST. It accurately reproduces the functional behav-

ior of hardware components such thread units, on-chip and off-chip memory

banks, and the 3D-mesh network. Table 2.1 shows the major simulation pa-

rameters of FAST.

• TiNy-Threads microkernel/runtime system library: The thread vir-

tual machine (TVM) of C64 is called TiNy-Threads (TNT) [42]. The TVM

includes the TNT non-preemptive thread model, memory model, and synchro-

nization model. In particularly, in the TNT thread model, thread execution is

non-preemptive and software threads map directly to hardware thread units

in a one-to-one fashion. In other words, after a software thread is assigned to

a hardware thread unit, it will run on that hardware thread unit until com-

pletion. Based on TNT TVM, a microkernel and the TNT runtime system

are customized for the unique features of the C64 architecture [42]. The TNT

library provides user and library developers an efficient Pthreads-like API for

thread level parallel programming purpose.
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• Standard C and math libraries: These libraries are derived from those in

newlib-1.10.0 [102]. Functions (libc/libm) are thread safe, i.e. multiple threads

can call any of the functions at the same time.

• CNET communication protocol and library: The CNET communication

library is used to manage the A-switch communication hardware [44] to provide

user-level remote memory read/write functionality.

• SHMEM: The SHMEM [114] shared memory access library, which is built on

CNET, is developed to support high-level shared memory programming model

across C64 nodes. SHMEM provides a shared global address space, data move-

ment operations between locations in that address space, and synchronization

primitives that greatly simplify programming for a multi-chip system such as

C64.
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Chapter 3

FAST FOURIER TRANSFORM

The fast Fourier transform (FFT) is a fast algorithm for computing the dis-

crete Fourier transform (DFT). In the literature, the FFT has been extensively

studied and implemented as an important frequency analysis tool in many areas

such as spectral analysis, data compression, partial differential equations, polyno-

mial multiplication, multiplication of large integers, etc.

3.1 Discrete Fourier Transform

Before describing the FFT a brief introduction to DFT is first given. Basi-

cally, the computational problem for the DFT is to compute the sequence X(k) of N

complex-valued numbers given another sequence of data x(n) of length N, according

to Equation 3.1.

X(k) =

N−1∑

n=0

x(n)ωkn
N , 0 ≤ k ≤ N − 1 (3.1)

where ωN = e−i2π/N . In general, the data sequence x(n) is also assumed to be

complex-valued. Similarly, The inverse DFT (IDFT) becomes

x(k) =
1

N

N−1∑

n=0

X(k)ω−kn
N , 0 ≤ n ≤ N − 1 (3.2)

For each value of k, direct computation of X(k) involves N complex mul-

tiplications (4N real multiplications) and (N − 1) complex additions (4N − 2 real

additions). Consequently, to compute all N values of the DFT requires N2 complex

multiplications and N2 −N complex additions.
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Direct computation of the DFT is basically inefficient primarily, because it

does not exploit two important properties of ωN . In particular, these two properties

are:

ω
k+N/2
N = −ωk

N (3.3)

ωk+N
N = ωk

N (3.4)

where Equations 3.3 and 3.4 are known as the symmetry property, and the periodicity

property, respectively.

3.2 Fast Fourier Transform

FFT algorithms, on the other hand, exploit these two properties and achieve

a computationally efficient solution for solving DFT. Without loss of generality, let

us consider the computation of the N = 2v point DFT by the divide-and-conquer

approach. We split the N -point data sequence into two N/2-point data sequences

f1(n) and f2(n), corresponding to the even-numbered and odd-numbered samples

of x(n), respectively, that is,

f1(n) = x(2n)

f2(n) = x(2n + 1)

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2. Now

the N -point DFT can be expressed in terms of the DFT’s of the decimated sequences

as follows:

X(k) =

N−1∑

n=0

x(n)ωkn
N , k = 0, 1, · · · , N − 1

=
∑

n∈even

x(n)ωkn
N +

∑

n∈odd

x(n)ωkn
N

=

N/2−1
∑

m=0

x(2m)ω2mk
N +

N/2−1
∑

m=0

x(2m + 1)ω
k(2m+1)
N (3.5)
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With the substitution of ω2
N = ωN/2, , Equation 3.5 can be expressed as,

X(k) =

N/2−1
∑

m=0

f1(m)ωkm
N/2 + ωk

N

N/2−1
∑

m=0

f2(m)ωkm
N/2

= F1(k) + ωk
NF2(k), k = 0, 1, · · · , N − 1 (3.6)

where F1(k) and F2(k) are the N/2-point DFTs of the sequence f1(m) and f2(m),

respectively.

Since F1(k) and F2(k) are periodic, with Equation 3.4, we have F1(k+N/2) =

F1(k) and F2(k+N/2) = F2(k), for a period of N/2. Further, by applying Equation

3.3, the original DFT could be expressed as,

X(k) = F1(k) + ωk
NF2(k), k = 0, 1, · · · , N/2− 1

X(k +
N

2
) = F1(k)− ωk

NF2(k), k = 0, 1, · · · , N/2− 1 (3.7)

One important observation of the above equations is that the direct com-

putation of both F1(k) and F2(k) requires (N/2)2 complex multiplications. Also,

additional N/2 complex multiplications are required to compute ωk
NF2(k). Hence

the computation of X(k) requires 2(N/2)2 + N/2 = N2/2 + N/2 complex multi-

plications. This is around half of complex multiplications required for the direct

computation of X(k). The decimation of the data sequence can be repeated again

and again until the resulting sequences are reduced to one-point sequences. For

N = 2v, this decimation can be performed v = log2 N times. Thus the total num-

ber of complex multiplications is reduced to (N/2) log2 N . The number of complex

additions is N log2 N .

Consequently, the FFT gives an Θ(N log2 N) algorithm for computing DFT.

The algorithm described above is usually referred to as the radix-2 Cooley-Tukey

FFT algorithm [35], and the specific computation is known as a butterfly operation,

which is shown in Figure 3.1.

Generally speaking, the implementation of the above recursive FFT algo-

rithm introduces non-negligible recursion overhead, thus it is not favored. Another
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Figure 3.1: Cooley-Tukey Butterfly Operation

approach is to employ the iterative implementation. The iterative algorithm subdi-

vides the resulting sub-problems iteratively until the problem size becomes one. In

order to achieve such an implementation, the input data has to be reordered before

the butterfly computations are performed.

For example, if we consider the case where N = 8, we know that the first

decimation yields the sequence x(0), x(2), x(4), x(6), x(1), x(3), x(5), x(7), and the

second decimation results in the sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7).

This shuffling of the input data sequence has a well-defined order as can be ascer-

tained from observing Figure 3.2 and Figure 3.3, which illustrate the decimation of

the eight-point sequence.

In the Cooley-Tukey algorithm, this permutation is performed before the

butterfly computations. Figure 3.4 shows an example of the iterative FFT de-

composition of 8 points using the Cooley-Tukey algorithm. Before the butterfly

computation, the bit-reversal permutation is performed on the input data. Then

the computation is decomposed through 3 stages of butterfly operations.

3.3 Multi-dimensional Discrete Fourier Transform

The ordinary DFT computes the one-dimensional (1D) dataset: a sequence

of data x(n) that is a function of one discrete variable n. More generally, the multi-

dimensional DFT of a multi-dimensional array x(n1, n2, · · · , nd) that is a function
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Figure 3.2: Bit Reversal of 8-point Data

of d discrete variables nl = 0, 1, · · · , Nl − 1 for l in 1, 2, · · · , d is defined as,

X(k1, k2, · · · , kd) =

N1−1∑

n1=0

(

ωk1n1

N1

N2−1∑

n2=0

(

ωk2n2

N2
· · ·

Nd−1∑

nd=0

ωkdnd

Nd
x(n1, n2, · · · , nd)

)

· · ·

)

where ωNl
= e−i2π/Nl .

Computationally, the multi-dimensional DFT is simply the composition of a

sequence of 1D DFTs along each dimension. For example, in the two-dimensional

(2D) case x(n1, n2) one can first compute the N1 independent DFTs of the rows,

i.e., along n2, to form a new array y(n1, k2), and then compute the N2 independent

DFTs of y along the columns (along n1) to form the final result X(k1, k2). Or, one

can transform the columns and then the rows, the order is immaterial because the

nested summations above are commutative. This is known as a row-column algo-

rithm. Because of this, given a 1D FFT algorithm, one way to efficiently compute

the multidimensional DFT is to perform 1D FFT alternately on each dimension of
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Figure 3.3: Binary Representation of the Bit Reversal

the data, interleaved with data transpose steps. This method is called the multi-

dimensional FFT algorithm, and is easily shown to have a Θ(N log2 N) complexity,

where N = N1N2 · · ·Nd is the total number of data points.
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Chapter 4

OPTIMIZING FFT ALGORITHMS

In this chapter, we discuss our experiences on the implementation, analysis

and optimizations of the FFT on C64 architecture. In the experiments, we consider

the data sizes of 216 and 256× 256 for 1D FFT and 2D FFT, respectively. In both

cases, the input data are double-precision complex numbers, and can fit into on-chip

GM. The twiddle factors are pre-computed and stored in on-chip GM as well. All

the experiments were conducted on the FAST simulator, using up to 128 TUs on a

C64 chip (unless otherwise explicitly stated).

We start with a base parallel implementation. Then, we carefully analyze

the FFT algorithm features, identify a set of important issues on problem decompo-

sition, load balancing, work distribution, data-reuse, register tiling, and instruction

scheduling taking into account the memory hierarchy, propose optimization methods

to address these issues and demonstrate how we explore corresponding C64 archi-

tecture features. We then set up the experiments based on the analysis, and find

the optimal parameters that match the C64 architecture features.

4.1 1D FFT

For the 1D FFT, we employ the iterative radix-2 Cooley-Tukey algorithm,

which requires Θ(N lg2 N) complex multiplication operations for N -point data.
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4.1.1 Base Parallel Implementation

Before we go into details about the implementation, let us first introduce an

important definition: work unit. A work unit is an arbitrarily defined piece of the

work that is the smallest unit of concurrency that the parallel program can exploit.

In other words, an individual work unit could be executed by only one processing

element. Given this definition, the concurrency in a problem can only be exploited

across work units. The size of a work unit may vary in different implementations. If

the amount of work in a work unit is small, it is a fine-grained work unit; otherwise,

it is a coarse-grained work unit. In this base parallel FFT implementation, we

consider a butterfly operation to be a work unit, which includes 1) read 2-point

data and the twiddle factor from GM, 2) perform a butterfly operations upon them,

and then, 3) write the 2-point results back to GM. We call this a 2-point work unit

because it contains 2 points that can be computed independently from other data.

This design is best described in Figure 4.1, which shows the computing of a 4-point

FFT with 2-point work units. In this figure, each work unit is shown as a rectangle.

To achieve a balanced workload among all threads, the work units are assigned to

threads in a round-robin configuration, during each stage of the FFT computation;

the color of a rectangle means that this work unit is assigned to a specific thread

for computing. Barriers are used to synchronize threads before the next pass starts.

Here we want to clarify that pass is different from the butterfly computation stage.

One pass may include one or more multiple butterfly computation stage(s).

Figure 4.2 show how this approach is implemented with TNT libraries (refer

to Chapter 2), where arrays x[] and w[] are of double type and are located in GM.

This fine-grained approach matches the natural granularity of the FFT in

the sequential program structure, which is the smallest unit of concurrency that the

FFT exposes. This parallel implementation has a performance of 6.54Gflops.
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Figure 4.1: Example of 2-point Work Unit

4.1.2 Optimal Work Unit

In the above implementation, at each pass, barriers are used to control the

accesses to the shared data, which imply large synchronization overhead. Decreasing

the number of synchronizations can reduce such overhead and potentially improve

the performance. On the other hand, since the function that processes each work

unit is the kernel part in the FFT computation, we would like to have a closer look

into this function and see whether any optimizations could be applied with regard to

the large register files of C64. Referring to Figure 4.2, in the base implementation, a

work unit consists of 6 load operations, 10 double-precision floating point operations,

and 4 store operations, besides the integer operations for computing the indexes. We

definitely cannot reduce the number of floating point operations, which is inherent to

the FFT algorithm itself. Then, could we reduce the number of memory operations?

Obviously, the answer is no in this case.

Let us look at an alternative approach. By using 2-point work units, a 4-point

FFT computation can be completed in two passes and requires 2 such work units at

each pass, 4 in total. In other words, this computation requires 24 load operations,
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...

/* determines the logic thread ID of a calling thread */

my_thread = tnt_my_thread();

/* determines the number of available threads */

threads = tnt_num_spmd_thread();

...

/* there are two passes for a 4-point FFT with 2-point work units */

for (pass = 0; pass < 2; pass ++) {

/* there are two work units at each pass,

* for a 4-point FFT with 2-point work units */

for (work = my_thread; work < 2; work += threads) {

double a_r, a_i, b_r, b_i, w_r, w_i, \

t0_r, t0_i, t1_r, t1_i, t2_r, t2_i;

...

/* compute the indexes for loading data */

a_index = ...

b_index = ...

w_index = ...

/* load from the memory */

a_r = x[a_index];

a_i = x[a_index + 1];

b_r = x[b_index];

b_i = x[b_index + 1];

w_r = w[w_index];

w_i = w[w_index + 1]

/* t0 = w * b */

t0_r = w_r * b_r + w_i * b_i;

t0_i = w_r * b_i - w_i * b_r;

/* a = a + w * b = a + t0 */

t1_r = a_r + t0_r;

t1_i = a_i + t0_i;

/* b = a - w * b = a - t0 */

t2_r = a_r - t0_r;

t2_i = a_i - t0_i;

/* store back to the memory */

x[a_index] = t1_r;

x[a_index + 1] = t1_i;

x[b_index] = t2_r;

x[b_index + 1] = t2_i;

}

tnt_barrier_wait(NULL);

}

Figure 4.2: TNT Code Segment of 2-point Work Units
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40 floating point operations, and 16 store operations. Instead of containing 2 points,

if one work unit has 4-point data that can be computed independently from other

data, the thread can read all data into registers, perform required computation,

and write back the results. Following the convention, we call this 4-point work unit.

Figure 4.3 shows the idea of 4-point work unit with the computing of a 4-point FFT,

where each work unit is shown as a rectangle. The workload of a 4-point work unit

includes 1) read 4-point data and the corresponding 4 twiddle factors from GM,

2) perform 2-stage butterfly operations upon 4 points, and then, 3) write the 4-

point results back to GM. In this case, this work unit consists of 16 load operations,

40 double-precision floating point operations, and 8 store operations. Similar to

the base implementation, threads need to be synchronized after all of them finish

their 4-point work units, which are 2-stage FFT computations. Compared with the

previous implementation, this method eliminates half of the barriers (besides the

first barrier used before the entire computing), and reduces the number of memory

operations by 40%, and increases the percentage of floating point operations to the

total number of instructions from 50% to 62.5% 1.

This is definitely an encouraging sign to achieve better performance. Let us

extend this idea more ambitiously. Assuming we have a machine with an unlimited

number of registers. Then, In general, using a work unit of N -point data can get

rid of (lg2 N − 1) barriers. Moreover, the percentage of floating point operations

to the total number of instructions is 5N lg2 N
6N lg2 N+4N

. One can verify this formula with

the above two examples, i.e., Figure 4.1 and Figure 4.3. If one work unit has 216-

point data, then only one barrier is needed and the percentage of floating point

operations to the total number of instructions would increase to 80%! It is clear

that the more data one work unit has, the better computation-communication ratio

1 Please note that we ignore the integer operations to simplify the analysis. While
this introduces inaccuracy, the trend remains the same.
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Figure 4.3: Example of 4-point Work Unit

we could achieve.

However, no practical machine has unlimited registers. Further, a huge work

unit may limit the concurrency exposed by the program. More data a work unit

has, less threads we need for a given FFT computation. So we have to decide an

appropriate size of the work unit, which should expose enough parallelism and still

fully utilize the register file without serious register spilling.

Let us examine the above example again. Although each C64 TU has a total

of 64 registers, some of them cannot be used in user-level applications, for example,

R0 (Permanent Zero), R1 (Interrupt return location), etc. Also, function input

arguments are passed through registers. Moreover, some intermediate computing

results have to be stored in registers as well. So, in general, the number of registers

available for user-level programs are around 50 on a C64 TU. For 4-point work unit,

it needs 8 registers for input data, 4 registers for the corresponding indexes, another

8 registers for the twiddle factors. Thus the total number of registers needed would

be 20, besides few registers used to keep intermediate results. While completing

this work unit will not cause register spilling, it does underutilize the register file;
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about half of the registers are not used during the entire computation. Considering

the case of 8-point work unit, it requires 16 registers for input data, 8 registers for

the corresponding indexes, another 24 registers for the twiddle factors. The total

number of registers necessary would be around 48. In theory, executing such 8-point

work unit on C64 will use most of the available registers of a C64 TU, and it will

not generate (serious) register spilling. If we go a little bit further with the 16-point

work unit, however, the total number of registers needed during the computation

increases to 112, which imposes much greater pressure on the register file and will

certainly introduce serious register spilling and thus typically will slow down the

computation. Therefore, based on our analysis, the 8-point work unit could be the

best choice for C64. Note that 8-point work unit implies a 3-stage FFT computation.

Given a FFT computation with n-point data, when lg2 n cannot be divided exactly

by 3, the last (lg2 n − lg2 n
3

) stage(s) can be computed with 4-point work units or

2-point work units.

Our analysis and conclusions have been confirmed by the experimental results

with different sizes of work units, which are shown in figure 4.4. Obviously the 8-

point work unit outperforms other work unit sizes. After applying this 8-point work

unit, we reach a performance of 13.17Gflops, which is 101.5% improvement over the

base parallel implementation.

4.1.3 Special Handling of the First Stages

As shown in figure 3.4, every butterfly operation performs on consecutive data

during the first stage. For example, the top left butterfly operation acts upon x(0)

and x(4), which are contiguous in the memory after the bit-reversal permutation. It

holds true that all points within the same work unit are consecutive in the memory

before the first stage, for any valid size of work unit. This implies that less registers

are required for the first lg2 M stages, as when M-point work unit is used, only the
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Figure 4.4: Number of Cycles per Butterfly Operation versus the Size of Work
Unit

starting pointer and the size of the work unit are needed to access this work unit,

instead of computing the indexes for all the points and keeping them in registers.

Inspired by this observation, we try to search the appropriate M , the size of

work unit for the first lg2 M stages. Since it is clear that M ≥ 8, let us consider

16-point work unit again. We need 32 registers for the input data and 1 register

for the starting address of this work unit, another 64 registers for the 32 twiddle

factors. Thus the total number of registers necessary would be 97, which still exceeds

the maximum available registers in C64 architecture. It seems that 8-point is the

maximum size of work unit that we can use during the entire FFT; however, let us

look at figure 3.4 more carefully. In this figure, all butterfly operations performed

during the first stages are using the same twiddle factor ω0
8. In the second stage,
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only 2 distinct twiddle factors are used, i.e., ω0
8 and ω2

8. In general, in the i-th stage

of a complete FFT computation, 2i−1 distinct twiddle factors are used, and they

include all twiddle factors used in the preceding stages. In other words, during the

execution of the first lg M stages, there are fewer twiddle factors being used. By

knowing this fact, we re-consider the possibility of using 16-point work unit. Instead

of 64, we only need 16 registers to keep 8 distinct twiddle factors used in the fist 4

stages. Thus the total number of registers required is 49, which can fit into the C64

register file. Further, we define these 8 twiddle factors as macros in the program.

This approach further improve the performance by reducing the number of index-

computing operations. While the inaccuracy introduced is well under control2. After

applying these approaches for the first 4 stages, we achieve an improvement of 28.4%

over the earlier implantation, while the absolute performance reaches 16.92Gflops.

4.1.4 Eliminating Unnecessary Memory Operations

Mathematically, in a 8-point work unit, all twiddle factors used in the “first”

stage of this 8-point computation (not the first stage of the complete FFT compu-

tation) are of the same value. Half of the twiddle factors used in the “second” stage

are of the same value, all the twiddle factors have distinct values in the “third”

stage. Thus, only 1, 2, and 4 distinct twiddle factors are needed for the first, sec-

ond, and third stage of the 8-point work unit computation, respectively. Thus we

can reduce the computation for the indexes of the twiddle factors and subsequent

memory operations. By eliminating these unnecessary instructions, we have an ab-

solute performance of 17.97Gflops, which is a 6.2% improvement over the previous

number.

2 After applying the FFT and a subsequent IFFT, the variance between the results
and the original data is in the order of O(10−14).
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4.1.5 Loop Unrolling

Recall that in the entire FFT computation, aside from the butterfly com-

putations, the bit-reversal permutation usually accounts for substantial portion of

the overall FFT computation time. Specifically, in the current implementation, this

permutation takes 5.7% of the total execution time. In the kernel loop of the bit-

reversal permutation, once the indexes of two points, to be permuted, are computed,

the two corresponding points will be read from GM, swapped and written back to

GM. Since C64 ISA has Bit Gather instructions that can be used to perform fast

index computation, the most time-consuming part is the memory operations. To

hide the memory latency, we unroll this kernel loop 4 times. By doing this, we

accomplish an improvement of 25.0% for the permutation part, leading to a 1.4%

improvement on the overall performance.

4.1.6 Register Renaming and Instruction Scheduling

The C64 architecture does not have data cache and each memory operation

may have different latency depending on the target memory segment, i.e., SPM,

GM, and DRAM. But most existing compilers assume a cache latency (cache hit)

or a uniform memory latency (cache miss) when they do instruction scheduling.

By manually applying register renaming and instruction scheduling on several ker-

nel functions, we hide most of the latencies due to memory operations and float-

ing point operations, and achieve a 13.7% improvement. The performance reaches

20.72Gflops.

4.1.7 Comparison with Memory Hierarchy Aware Compilation

While the above manual optimizations can achieve a relatively high perfor-

mance, the entire process is tedious and error-prone. The different delays of memory

instructions when accessing different memory segments have to be carefully investi-

gated and manipulated. On the other hand, this work would be an ideal job for a
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smart compiler that could identify the segments where variables reside, and apply

the corresponding latencies when scheduling the instructions. Inspired by this idea,

the C64 compiler was later tailored such that it accounts for the different latencies

when accessing variables specified with segment pragmas when applying instruction

scheduling (which is not part of this thesis). By employing this memory hierarchy

aware compiler with the code from 4.1.5, it achieves a 8.8% improvement, which

corresponds to a performance of 19.84Gflops. While the absolute performance is

a little bit lower than the manually optimized code in 4.1.6 (it is still comparable

to the latter), this optimization dramatically reduces the effort to achieve a high

performance implementation on architectures with a deep memory hierarchy like

C64. Figure 4.5 shows the performance of this optimized implementation. From

these plots, we observe that the performance of this implementation scales nearly

linearly up to 128 threads.

Figure 4.5: Performance of the Optimized 1D FFT Implementation

So far, we finish the optimizing 1D FFT implementation. We list all the
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Table 4.1: 216 1D FFT Incremental Optimizations

Optimizations GFLOPS Speedup Over Incremental
Base Version Speedup

Base 6.54 1.00 0%
Optimal W.U. 13.17 2.02 101.5%

Special App. 16.92 2.59 28.4%
Eli. MEM Ops. 17.97 2.75 6.2%

Loop Unroll. 18.23 2.79 1.4%
Reg. & Inst. 20.72 3.17 13.7%

techniques applied and the corresponding results in Table 4.1. Figure 4.6 shows the

graphic representation of those incremental optimizations. Note that the effect of

the memory hierarchy aware compiler is not shown in either Table 4.1 or Figure 4.6.

Among all optimizations, the ones of most significant improvement are the optimal

work unit and the special approach for the first 4 stages. As we have discussed, they

are achieved by carefully investigating the features of the FFT algorithm and C64

architecture features. Moreover, by examining the mathematical nature of FFT,

redundant memory operations with regard to the twiddle factors was removed. All

above optimizations show that the domain-specific knowledge is very important,

some time critical, to achieve a desirable performance. On the other hand, tradi-

tional optimization techniques may still be able to play some roles in the many-core

era, for example, the loop unrolling technique used in the bit-reversal permutation.

However, efforts may be needed to identify those valid techniques. Meanwhile, it

is clear that many-core system software, especially the compiler, needs to address

many challenges due to many-core architectures. For example, the performance

improvement due to the manual register renaming and instruction scheduling is sig-

nificant, 13.7% over the previous version. Inspired by this observation, the compiler

was later tailored with the memory hierarchy aware instruction scheduling, and was

able to show a satisfactory performance with minimum programmer effort.
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Figure 4.6: Effect of Optimization Techniques of 1D FFT Implementation (with-
out the Memory Hierarchy Aware Compilation)

4.2 2D FFT

As mentioned in Chapter 3, the multidimensional FFT problem can be solved

by performing 1D FFT alternately on each dimension of the data interleaved with

data transpose steps. That is, for a N ×N 2D FFT x(i, j), one can simply perform

a sequence of 1D FFTs by any 1D FFT algorithm: first transform along the row

dimension x(:, j), after all row FFTs are done, then transform along the column

dimension x(i, :). This is known as the conventional row-column algorithm. This

method is easily shown to require Θ(N2 lg2 N) complex multiplication operations.

Our implementation of the parallel 2D FFT follows this row-column algorithm.

4.2.1 Base Parallel Implementation

In the base implementation, we simply employ one row/column FFT as a

work unit. All row FFTs are independent of each other, so they can be computed in
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parallel, the same with all column FFTs. After completing all row FFTs, a barrier

is used to synchronize all threads before they perform the column FFTs. Work

units are distributed to threads in the round-robin configuration. By utilizing the

optimized 1D FFT implementation presented in the previous section, this parallel

implementation achieves a performance of 15.11Gflops.

4.2.2 Load Balancing

The work unit scheme used in the base implementation is straightforward

and can be easily implemented. However, it may hurt the performance due to the

non-trivial load imbalance. For example, given a 64× 64 2D FFT, using more than

64 threads will not produce any performance gain over using exactly 64 threads:

while the first 64 threads are working on their own work units, other threads will

remain idle because there is no work unit available for them. In other words, this

simple work unit scheme does not expose enough concurrency to keep all threads

busy at all times, thus limits the speedup achievable. To resolve this issue, we should

use fine-grain work units and distribute them over all threads evenly. So, instead

of having one entire 1D FFT as a work unit, we divide each row/column FFT into

small tasks.

In this way, multiple threads may work on one single row/column FFT, just

like what we did for 1D FFT. Based on what we have learned from 1D FFT, we

still use 8-point work unit. While this “new” work unit scheme reduces the load

imbalance issue, it needs more barriers to synchronize threads working on the same

row/column FFT. Thanks to C64’s hardware barrier support, these barriers do not

introduce much overhead.
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4.2.3 Work Distribution and Data Reuse

Given a set of work units defined in the previous section, one can distribute

these work units to threads in a common round-robin scheduling. This method per-

forms well and can distribute work units evenly as possible to all threads. However,

it does not exploit the nature of the 2D FFT. In the 2D FFT computation, the

exact same set of operations are repeatedly performed on each row/column FFT,

including the bit-reversal permutation and the butterfly computation. For exam-

ple, if x(a, 0) and x(b, 0) need to be swapped during the bit-reversal permutation,

x(a, j) and x(b, j) need to be swapped during the bit-reversal permutation as well,

for 0 ≤ j < N . This also holds true for the butterfly computation: if a butterfly

operation with a twiddle factor ω is to be performed on x(0, a) and x(0, b), this

butterfly operation should be performed on x(i, a) and x(i, b), for 0 ≤ i < N , with

the same twiddle factor. This provides great opportunity for data reuse, thus it

can reduce the index computations and memory operations. A major-reversal work

distribution scheme is employed to exploit this opportunity. Namely, when a thread

completes a work unit consisting of {x(a, io), x(a, i1), · · · , x(a, in)} in a row FFT

x(a, :), instead of going row-major and locating another work unit in the same row

FFT, it reuses the computed indexes, i.e., {i0, i1, · · · , in}, and twiddle factors by go-

ing column-major to the row FFT x(a+1, :) and locating the work unit consisting of

{x(a+1, io), x(a+1, i1), · · · , x(a+1, in)} as its next work unit. The procedure repeats

until this thread finishes all its workload. The similar procedure applies to column

FFTs and the bit-reversal permutation. After using the fine-grained work unit and

this major reversal work distribution scheme, the performance reaches 19.37Gflops.

4.2.4 Memory Hierarchy Aware Compilation

We apply the updated compiler, with the memory hierarchy aware instruc-

tion scheduling, to the 2D FFT implementation, which introduces another 3.25%

improvement over the previous compilation, thus the overall performance raises to
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20.00Gflops. Finally, similar to our 1D FFT implementation, the optimized 2D FFT

implementation also scales nearly linearly up to 128 threads, as shown in Figure 4.7.

Figure 4.7: Performance of the Optimized 2D FFT Implementation

4.3 Related Work

The FFT problem has been extensively studied on various machines. A large

number of literature addresses the distributed memory FFT implementations on the

hypercube architecture [58, 84, 123] by taking advantage of the small communication

delay between processors that are physically close in the network. Other parallel

FFT implementations have been investigated on arrays [85] and mesh architectures

[130].

There is also a large body of literature concerned with shared-memory FFTs.

The communication pipelining technique was proposed for solving the FFT on the
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Connection machine [137]. Two different scheduling strategies for single-vector

FFTs and three different approaches to the multiple FFTs are discussed in [23].

The authors also develop models of performance that are consistent with their ex-

periments on the Denelcor HEP. Additional performance studies on shared-memory

FFT are discussed in [12, 105, 153]. Moreover, by using the Kronecker notation,

the work in [83] shows how to design parallel DFT algorithms with various architec-

ture constraints. The significance of considering memory hierarchy to an effective

FFT implementation has been pursued in [13]. The work in [27] shows how to

use local memory to compute the FFT efficiently on CRAY-2. The issue of data

re-use is also discussed in [5, 10]. Further, an excellent review of various sequen-

tial and parallel DFT algorithms proposed in the literature until 1991 appeared in

[94]. Two dataflow-based multithreaded FFTs [144] are presented to exploit the

features of EARTH [143], a fine-grain dataflow architecture. Performance evalu-

ation and analysis of several scientific computing kernels, including FFT, on the

IBM Cell architecture [78], a heterogeneous multi-core architecture, are reported in

[155]. Results demonstrate the tremendous potential of the Cell architecture for sci-

entific computations in terms of both raw performance and power efficiency. Lately,

general-purpose computing on graphics processing units (GPGPU) is becoming pop-

ular because of the high peak performance. As a result, several work of FFT on

GPUs have been reported [63, 68, 99, 106, 111].

FFTW [57] is a library for computing the DFT. For small DFTs, it calls

special code modules, called codelets. These are pre-generated and highly optimized

using standard and DFT specific optimization techniques [56]. For large DFTs,

it use a dynamic programming approach to determine the best execution plan to

break down into codelets. It supports multithreaded programming interface, and is

portable and adaptable on various SMP architectures with a cache-based memory

hierarchy.
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SPIRAL [119] is a program generator for linear transforms such as the DFT.

It automates the implementation task from problem specification to program. Its

approach is to use a specialized signal processing language and a code generator with

a feedback loop, which allows the systematic exploring of possible choices of formals

and code implementations to choose the best combination. Recently, SPIRAL has

presented an approach to automatic generation of parallel FFT code for SMP and

multi-core architectures [53]. The generated parallel FFT codes using OpenMP as

well as Pthreads are evaluated on several CMP/SMP architectures.

4.4 Summary

In this chapter, we presented the implementation and optimizations of the

FFT on the C64 many-core architecture, together with extensive analysis. The re-

sults demonstrate that many-core architectures like C64 can be used to achieve ex-

cellent performance results with respect to both speedup and absolute performance

for DSP problems like FFT. For instance, the best result of the FFT obtained on

a 3.60GHz Intel Xeon Pentium 4 processor is 5.5Gflops [49], which is only around

one quarter of the performance received by using one C64 chip.

The study also shows that application development on such many-core ar-

chitectures is not easy. We should carefully consider both architecture features and

properties of the application/algorithm itself to achieve the best performance. Al-

most all optimizations applied in our work involve problem-specific features that

can be matched to certain architecture features, such as register file size with work

units, using fast barrier operations, and so on.

Moreover, the study shows that many-core system software, especially the

compiler, faces more challenges. In the study we shows that memory hierarchy aware

instruction scheduling may dramatically improve the performance while reducing the

burden on the programmers.
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The overall contributions in this chapter, together with other software de-

velopment experiences on C64 [77, 140, 150], clearly highlight the benefits and

advantages of employing many-core architectures and serves as a basis for future

research.
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Chapter 5

PERFORMANCE MODEL OF FFT ALGORITHMS

While many-core architectures are becoming increasingly attractive platforms

for high performance computing, it is difficult for programmers to fully explore their

computing capabilities, partly due to a lack of performance modeling that can assist

the design of parallel algorithms and direct applications performance tuning. For

instance, when designing and tuning FFT algorithms for many-core architectures,

programmers may ask the following questions:

• What is the expected performance of an FFT implementation programmed in

a high-level language for a many-core architecture?

• How does the performance of a parallel FFT algorithm change with the prob-

lem size?

• How scalable is an FFT algorithm, given a problem size?

A performance model that can answer these questions provides valuable in-

sights for designing FFT algorithms on many-core systems, and tuning them to

achieve the maximum performance.

In this chapter, we first present an abstract many-core architecture that cap-

tures generic features and parameters of a specific class of many-core architectures.

We then propose a performance model that estimates the performance of paral-

lel FFT algorithms for this abstract many-core architecture. We instantiate our

performance model in the context of the IBM C64 architecture.
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5.1 Abstract Many-core Architecture

In this study, we restrict our analysis to a specific class of many-core ar-

chitectures. We abstract their main architectural features into a generic form as

illustrated in Figure 5.1.

off−chip off−chip

network

Interconnection

chip

LM0

LM1

on-chip GM2

on-chip GMM−1

GM0 GMO−1

on-chip GM1

on-chip GM0

LMC−1

LM2

CORE0

COREC−1

CORE1

CORE2

Figure 5.1: An Abstract Many-core Architecture

This abstract many-core architecture consists of a large number of identical

cores/processors, each of whom has one or more processing elements (PEs), and

a three-layer memory hierarchy, i.e., the local memory (LM), the on-chip global
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memory (on-chip GM), and the off-chip global memory (off-chip GM). The on-

chip GMs and off-chip GMs are interleaved to achieve higher memory bandwidth.

The memory hierarchy is explicitly software addressable to all cores. An on-chip

interconnection network connects cores/processors to global memories. All PEs can

access on-chip GMs and off-chip GMs via the network. An LM may or may not be

globally accessed by all PEs, however, its associated core/PE can access it through

some “back-door” with very low latency. We simplify the interconnection network by

assuming that the unloaded latency [38] of global memory accesses, either on on-chip

GMs or on off-chip GMs, is equal, regardless of the origin or the destination of the

access. Instances of such architecture include IBM C64, ClearSpeed CSX700 [34],

etc.

To better understand the performance issues, we characterize this abstract

architecture with a set of major architectural parameters, which are summarized

in Table 5.1. These parameters and their denotations will be used in our following

discussion. While there exist more general parallel machine models in the literature

with fewer parameters, like LogP [37] and BSP [147], our abstract architecture (and

the corresponding parameters) is developed for a specific class of state-of-the-art

many-core architectures. Therefore it involves some low-level details, and we do not

claim that this abstract architecture/analysis can be immediately applied to a large

diversity of parallel architectures.

5.2 FFT Algorithms

In this section, we first briefly review the sequential one-dimensional radix-2

Decimation-In-Time (DIT) Cooley-Tukey FFT algorithm, and then present its par-

allel counterpart and a parallel radix-4 algorithm. The performance model presented

in Section 5.3 are derived for the parallel FFT algorithms presented in this section.
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Table 5.1: Parameters of the Abstract Many-core Architecture
C number of cores in one chip
P number of PEs in one core
M number of on-chip memory modules
O number of off-chip memory modules

Bin
bandwidth of a inbound link between a core and the
network, measured in bytes per cycle.

Bout
bandwidth of a outbound link between a core and the
network, measured in bytes per cycle.

LLM latency for the one-way local memory access.

Bnet
network bandwidth of the on-chip Interconnection net-
work, measured in bytes per cycle.

B
bandwidth of a single memory module, measured in
bytes per cycle.

W
granularity of the interleaved memory system, measured
in bytes

5.2.1 Sequential FFT Algorithm

The Cooley-Tukey radix-2 DIT FFT algorithm is one of the most common

FFT algorithms. It takes a divide and conquer method that recursively breaks down

an N -point DFT into two N/2-point DFTs. The time complexity of such algorithm

is Θ(N log2 N). More specifically, an N -point FFT, where N = 2t, proceeds in t

stages, each of whom is composed of 2t−1 butterfly operations. The stride between

two input data a and b in a butterfly is 2i−1, where i is the stage where the butterfly

occurs, 1 ≤ i ≤ t. 2i−1 different twiddle factors are used in the i-th stage.

Figure 5.2 outlines Algorithm SEQ-R2-FFT, a sequential radix-2 DIT Cooley-

Tukey algorithm.

The input data and the pre-computed long weight vector [14], which is a

stacking of twiddle factors used from the first stage to the last stage, are stored in

array x and array ω, respectively. Note that a bit-reversal permutation needs to be

performed on input x before the butterfly computation stages. Such permutation is

not shown in Figure 5.2, and the input x has already been reordered. This is true

in our following discussion, and we will not make any further clarification.
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Algorithm SEQ-R2-FFT

1. n← 2t−1

2. for p← 1 to t do
3. l ← 2p

4. s← 2p−1

5. for i← 0 to n− 1 do
6. k ← i/s
7. j ← i mod s
8. τ ← ω[s− 1 + j] ∗ x[kl + j + s]
9. x[kl + j + s]← x[kl + j]− τ
10. x[kl + j]← x[kl + j] + τ
11. endfor
12. endfor

Figure 5.2: Sequential Radix-2 DIT Cooley-Tukey FFT Algorithm

In Figure 5.2, the outer for loop (line 2) iterates all stages, and the inner for

loop (line 5) calculates butterfly operations in each stage iteratively. For a N -point

SEQ-R2-FFT, N = 2t, we denote the data points accessed in the i-th butterfly,

1 ≤ i ≤ N/2, in the p-th stage, 1 ≤ p ≤ t, as M(p, i). An interesting memory access

pattern of SEQ-R2-FFT is captured in the following observation:

Observation 5.2.1 In the p-th stage of SEQ-R2-FFT, data points accessed from

the a · (2c)-th 1 iteration to the ((a+1) · 2c− 1)-th iteration, i.e.,
⋃(a+1)·2c−1

k=a·2c M(p, i),

constitute either one continuous data region, or two separate continuous data regions

with equal lengths, where c is an integer between 0 and log2 N/2, and a is another

integer between 0 and (N/2c)− 1.

For example, let a = 1, and c = 1. These values imply the iterations

from iteration 2 to iteration 3. In stage 2, data points accessed during this

range are {x(4), x(6), x(5), x(7)}, which constitute a continuous data region from

x(4) to x(7). In stage 3, data points accessed from iteration 2 to iteration 3

1 We regard 20 = 0 here.
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are {x(2), x(6), x(3), x(7)}, which establish two separate continuous data regions

(x(2), x(3)) and (x(6), x(7)) with length 2. Detailed discussion of this observation

and its application to our performance modeling can be found in Section 5.3.3.

5.2.2 Parallel FFT Algorithms

In the above sequential algorithm, read-after-write data dependence exists be-

tween stages, while butterfly operations in one stage are mutually independent. This

dependence relation reminds us a straightforward parallel algorithm that concur-

rently executes butterflies within each stage and synchronizes two executive stages

using a global barrier. We assume that the total number of PEs available in the

abstract architecture model is far less than the input problem size N , then butterfly

operations in one stage can be almost evenly distributed among PEs in a cyclic

mode. This parallel algorithm PAR-R2-FFT, executed by PE e, 0 ≤ e < P · C, is

given in Figure 5.3. Similarly, utilizing the same parallelization scheme, a parallel

radix-4 Cooley-Tukey algorithm, PAR-R4-FFT, is presented in Figure 5.4. In this

algorithm, ω is a N−1
3

by 3 array, which is a stacking of twiddle factors and their

squares and cubes used from the first stage to the last stage [94].

Note that both Algorithm PAR-R2-FFT and Algorithm PAR-R4-FFT are

straightforward parallel version of their sequential counterparts, and are not opti-

mized for any specific architecture. While highly optimized algorithms could achieve

very good performance, as we demonstrated in Chapter 4, simple algorithms are

beneficial to the illustration of our performance model.

5.3 Performance Estimation Strategy

In this section, we first introduce assumptions that are used throughout the

chapter. We then present the strategy to estimate the performance of parallel algo-

rithms proposed in Section 5.2.2.
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Algorithm PAR-R2-FFT

1. n← 2t−1

2. for p← 1 to t do
3. l ← 2p

4. s← 2p−1

5. for i← e to n− 1 step P · C do
6. k ← i/s
7. j ← i (mod s)
8. τ ← ω[s− 1 + j] · x[kl + j + s]
9. x[kl + j + s]← x[kl + j]− τ
10. x[kl + j]← x[kl + j] + τ
11. endfor
12. barrier
13. endfor

Figure 5.3: Parallel Radix-2 DIT Cooley-Tukey Algorithm

5.3.1 Assumptions

In order to simplify the modeling, we take the following assumptions.

• We assume that each core and memory bank has an infinite incoming buffer

and an infinite outgoing buffer out of the network interface. Therefore, no

request/response packet will be dropped.

• We assume that every PE in a core participates in the FFT computation.

• We assume that the problem size N is much larger than the total number of

PEs participating in the computation, i.e., N ≫ P ·C, which is often true for

most scientific applications.

• We do not consider the cost associated with the bit-reversal permutation,

because it is not directly related to the cost of butterfly operations. Our

model can be easily extended to incorporate this cost, though.
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Algorithm PAR-R4-FFT

1. n← 4t−1

2. for p← 1 to t do
3. l ← 4p

4. s← 4p−1

5. ν ← (s− 1)/3
6. for i← e to n− 1 step P · C do
7. k ← i/s
8. j ← i (mod s)
9. α← x[kl + j]
10. β ← ω[v + j, 0] · x[kl + s + j]
11. γ ← ω[v + j, 1] · x[kl + 2s + j]
12. δ ← ω[v + j, 2] · x[kl + 3s + j]
13. τ0 ← α + γ
14. τ1 ← α− γ
15. τ2 ← β + δ
16. τ3 ← β − δ
17. x[kl + j]← τ0 + τ2

18. x[kl + s + j]← τ1 − iτ3

19. x[kl + 2s + j]← τ0 − τ2

20. x[kl + 3s + j]← τ1 + iτ3

21. endfor
22. barrier
23. endfor

Figure 5.4: Parallel Radix-4 DIT Cooley-Tukey Algorithm

• While the system noise may have significant impact on the performance [16,

17, 115], this issue is out of the scope of this study, and we ignore it in our

modeling.

• If not explicitly stated otherwise, we assume that thread private data resides

in local memories, and shared data, e.g, x, and ω reside in global memories.

• To further simplify the analysis, we assume that all architectural parameters

are even numbers. In particular, N , P , C and W are powers of two.
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Due to the above assumptions, we do not claim that our performance model

can predict the accurate execution time of an application; rather, we attempt to use

this model to quantitatively evaluate the performance impact (trend) of algorithms

and architectural features on many-core systems.

5.3.2 Basic Strategy

Both Algorithm PAR-R2-FFT and Algorithm PAR-R4-FFT described in

Section 5.2.2 have an iterative structure. More specifically, some synchronization-

free computation pattern is repeated in every stage, and a global barrier is enforced

after each stage to guarantee that all operations in that stage have completed.

For example, an N -point PAR-R2-FFT proceeds in log2 N stages, each of which

composed of a set of independent butterfly operations evenly distributed among

PEs. Each butterfly operation starts from loading two input data points and a

pre-calculated twiddle factor from the global memory, followed by a computation

kernel, and finally ends with storing two output points back to memory, as shown

in Figure 3.1, The execution time of such N -point PAR-R2-FFT can therefore be

calculated by

TFFT =

log2N
∑

r=1

(max(TC(r, p) + TM(r, p) + TB(r, p))), 0 ≤ p < P · C (5.1)

where TC(r, p), TM(r, p) and TB(r, p) denote the computation time, memory access

time and synchronization time, respectively, of PEp in stage r. The execution time

of a N -point PAR-R4-FFT can be obtained in a very similar way, except that the

algorithm proceeds in log4 N stages, and each butterfly operation works on a 4-

point input dataset. For the sake of brevity, we focus our analyses on Algorithm

PAR-R2-FFT, and only show the difference when necessary.

In our abstract architecture, all PEs are identical. Since butterfly operations

in one stage are evenly distributed among PEs, and every butterfly takes the same
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amount of computation time, we can regard of TC(r, p) being same for all r and p.

We let TC denote the total computation time, i.e., the computation time for N/2

butterfly operations, in each stage.

Similarly, TB(r, p) can be regarded as same for all r and p, since the semantics

of a global barrier requires that all PEs wait at the barrier before any of them is

allowed to proceed. We let TB denote the synchronization time immediately after

each stage.

Equation (5.1) can therefore be simplified as

TFFT =

log2 N
∑

r=1

max(TM (r, p)) + log2 N · TC + log2 N · TB, 0 ≤ p < P · C (5.2)

Using TM(r) as the short for max(TM (r, p)), we can rewrite Equation 5.2 as

TFFT =

log
2

N
∑

r=1

TM(r) + log2 N · TC + log2 N · TB, 0 ≤ p < P · C (5.3)

By deriving cost functions for TM(r), TC and TB, we can quantitatively esti-

mate the performance of Algorithm PAR-R2-FFT and PAR-R4-FFT on the abstract

architecture model.

5.3.3 Estimated Memory Latency

We now derive the cost function for memory access delay for Algorithm PAR-

R2-FFT.

Estimated Local Memory Latency

As described in Section 5.1, each PE can access its associated LM through

some exclusive “back-door”, without going through the network. Hence, we can

simply treat the latency of accessing a PE’s associated LM as a constant.
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Estimated Global Memory Latency

In our abstract architecture model, the memory access delay of load/store

operations issued to GMs is determined by the unloaded latency [38] and contention

delays. The unloaded latency is the transmission time under ideal conditions. It

is determined by the system design and is fixed for a given architecture. The con-

tention delay occurs when multiple requests compete for some hardware resource.

There are four types of contention delays in our abstract architecture model: (1) the

outbound delay, when multiple PEs from the same core compete for a shared chan-

nel to inject memory access requests to the network, (2) the network delay, when

multiple memory accesses compete for the network transmission, (3) the memory

contention delay, when memory access requests are waiting to be handled by a mem-

ory bank, and (4) the inbound delay, when multiple data elements are loaded to the

same core (for memory loads only). Each type of contention delays can be roughly

calculated by dividing the size of the request (in bytes) by the average service rate

(in bytes/cycle).

In Algorithm PAR-R2-FFT, the longest memory access delay occurs when

multiple memory loads/stores are issued to GMs in a burst. Let Tld and Tst denote

the time (in cycles) to complete a burst of P · C load and store requests, one from

each PE, respectively. Tld and Tst can be represented as

Tld =
P · Sr

Bout

− 1
︸ ︷︷ ︸

outbound

+
P · C · Sr

Bnet

− 1
︸ ︷︷ ︸

network

+
P · C · Sd

Bm

− 1
︸ ︷︷ ︸

memory

+
P · C · Sd

Bnet
− 1

︸ ︷︷ ︸

network

+
P · Sd

Bin
− 1

︸ ︷︷ ︸

inbound

(5.4)

Tst =
P · Sd

Bout
− 1

︸ ︷︷ ︸

outbound

+
P · C · Sd

Bnet
− 1

︸ ︷︷ ︸

network

+
P · C · Sd

Bm
− 1

︸ ︷︷ ︸

memory

(5.5)
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In the above equations, Sr and Sd are the size (in bytes) of a single re-

quest/response, with or without containing the data of x or ω, respectively2. Then

P ·Sr is the total size of load requests issued by a single core, and P ·Sd is the total

size of the store requests issued by a single core, or the total size of the response

delivered back to a single core. Similarly, P · C · Sd is the total size of data to be

served for a memory access burst. Bm, the aggregate effective memory bandwidth,

denotes the real achievable memory bandwidth (in bytes/cycle) when a burst of

memory accesses are handled. Note that a memory load travels the network twice

for sending the request and receiving the response, while a memory store travels the

network only once.

Due to varieties of interconnection networks in topology, routing algorithms,

switching strategy, and flow control mechanism, it is hard to induce a general equa-

tion for network delay, hence we focus on a type of interconnection network - crossbar

switch - in this study. The methodology presented here can be easily extended to

other types of networks.

A crossbar switch is one form of the multistage networks that allows any in-

put port to communicate with any output port in one pass through the network [73].

One important property of the crossbar switch is its non-blocking connectivity within

the switch, which allows concurrent connections between multiple input-output pairs

with a constant transmission time per packet, provided that inputs/outputs are al-

ways available during the connections [72]. For a many-core architecture employing

a crossbar switch as the interconnection network, the components annotated with

“network” in Equation (5.4) and (5.5) are constants. Furthermore, under our as-

sumption that every core and memory bank has infinite incoming and outgoing

buffers out of the network interfaces, Bin and Bout are considered as constants too.

2 To simplify the expression, we assume that a load response and a store request
are of an equal size. In the actual hardware, they may have different sizes. This
fact does not affect our method presented here.
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In this study we focus on the cases where x and ω are residing in the on-chip

GM. Off-chip memory accesses usually involve more complicated hardware behaviors

through the datapath, and the corresponding analysis will be a natural extension of

the method presented in this study.

For a many-core architecture employing a crossbar switch as the intercon-

nection network, Bm is an accumulated bandwidth of accessed memory banks. It

is worth to note that the value of Bm may be different for memory operations per-

formed on x and ω, since, in a given stage, different PEs always access distinct data

elements in x, while they probably attempt to load the same twiddle factor from

ω, especially in the first several butterfly stages. When multiple PEs access the

same data, they introduce more contention in memory banks. This implies that

different contention delay may occur when accessing x and ω through the execu-

tion. To clarify this point, we denote Bm x(r) as the aggregate effective bandwidth

for loading/storing x during stage r, and denote Bm ω(r) as the aggregate effective

bandwidth for loading ω during stage r. To determine the exact value of Bm x(r)

and Bm ω(r), we assume, without any loss of generality, that x and ω are aligned to

a memory bank boundary.

In our analysis, we consider that a PE can issue load/store requests in

a pipelined way, i.e., one request per machine cycle, which is true for modern

architectures. A single radix-2 butterfly operation contains 3 load requests (2 for

x and 1 for ω), and 2 store requests (for x). The completion time of the pipelined

requests is determined by when the last request is finished, i.e., the longest delay.

For a burst of radix-2 butterfly operations, we have the following equations to

compute the latency Tld p and Tst p, for a pipelined load and store, respectively,

Tld p(Bm x, Bm ω) =
3P · Sr

Bout

− 1
︸ ︷︷ ︸

outbound

+2D +
3P · Sd

Bin

− 1
︸ ︷︷ ︸

inbound
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+ max(
2P · C · Sd

Bm x
− 1,

P · C · Sd

Bm ω
− 1)

︸ ︷︷ ︸

memory

(5.6)

Tst p(Bm x) =
2P · Sd

Bout

− 1
︸ ︷︷ ︸

outbound

+D +
2P · C · Sd

Bm x

− 1
︸ ︷︷ ︸

memory

(5.7)

where the constant D is the one way transmission latency of the crossbar

switch.

Determining Bm x(r)

Since Bm x(r) is an accumulated bandwidth of all accessed memory banks, the key

issue is to determine the number of memory banks accessed in a burst of butterfly

operations. Recall that Observation 5.2.1 in Section 5.2 states that data points

accessed from iteration a · 2c to iteration (a + 1)2c− 1 in one stage constitute either

one continuous region or two separate continuous regions on x. This reminds us

to transform the problem of calculating Bm x(r) into determining the number of

memory banks that are “covered” by those continuous region(s).

We first discuss the case where all accessed elements in x during a burst

constitute one continuous region, which happens during the first log2(2P ·C) stages.

Denote the length of such continuous region as L1, where L1 = 2P ·C ·Sd, and such

region spans ⌈L1

W
⌉ memory banks. We then have

Bm x(r) = min(M, ⌈
L1

W
⌉) · B (5.8)

Next we discuss the case where all accessed elements in x during a burst

constitute two separate continuous data regions with equal lengths, which happens

in stage r, where log2(2P · C) < r ≤ log2 N . Denote the length of such regions as

L2, and denote the distance between two regions (i.e., the distance from the start

of the first region to the start of the second region) as Z, where L2 = P ·C ·Sd, and

Z = 2r−1 · Sd. Since both regions are aligned to the memory bank boundary, the
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number of memory banks on which each region spans is ⌈L2

W
⌉, and the number of

memory banks “covered” by the distance Z is ⌈ Z
W
⌉. Note that if Z is long enough,

then the second region might “fall off” the end of the last memory bank and “wrap

around” to the start of the first memory bank, as illustrated in Figure 5.5(c).

If ⌈L2

W
⌉ ≥ M , Bm x(r) is simply M · B, since all memory banks will be

simultaneously active in serving memory access requests in a burst. Otherwise, we

have to investigate the relative positioning of those two regions. Figure 5.5 lists

all of three possible scenarios. In the figure, the shaded boxes represent memory

regions, and the dotted arrow lines show the wrap-around.

Scenario 1. As shown in Figure 5.5(a), two regions are not overlapping on

memory banks. This occurs when (M ·W − 2L2) ≥ (Z mod (M ·W ) − L2) ≥ 0,

that is, (M ·W −L2) ≥ Z mod (M ·W ) ≥ L2. In this case, the number of covered

memory banks is ⌈2L2

W
⌉, and we have

Bm x(r) = ⌈
2L2

W
⌉ · B (5.9)

Scenario 2. Figure 5.5(b) shows one kind of overlapping of two regions.

When this scenario happens, it satisfies the condition 0 ≤ Z mod (M ·W ) < L2.

The number of covered memory banks Y = ⌈Z mod (M ·W )+L2

W
⌉, and we have

Bm x(r) = min(M, Y ) · B (5.10)

Scenario 3. Another kind of overlapping is shown in Figure 5.5(c).

The second region falls off the end of the last memory bank and wraps

around to the first memory bank. In this scenario Z satisfies the condition

Z mod (M · W ) ≥ M · W − L2. The number of covered memory banks is

⌈L2

W
⌉+ ⌈M ·W−(Z mod (M ·W )

W
⌉, and we have

Bm x = (⌈
L2

W
⌉+ ⌈

M ·W − (Z mod (M ·W )

W
⌉) · B (5.11)
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Figure 5.5: Relative Positioning of Two Memory Regions

Determining Bm ω(r)

Determining Bm ω(r) is different from what we have done with Bm x(r), since the

number of distinct twiddle factors accessed in each stage varies through the execu-

tion. Here we list two possible scenarios.

Scenario 1. In the case of P · C · Sd ≤ W , Bm ω(r) is always equal to B,

because P · C requests of ω always fit into one memory bank3.

3 Bm ω(r) could be a little bit larger than B, since the requested ω in a burst may
reside in two consecutive memory banks; the first bank holds only one twiddle
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Scenario 2. When P · C · Sd > W , Bm ω(r) can be easily determined as B

for the first log2
2W
Sd

stages, because the number of distinct twiddle factors used in

each stage does not exceed W
Sd

. For the rest stages, Bm ω(r) is mutually decided by

the number of memory banks holding the twiddle factors used in stage r, and the

number of requested (distinct) twiddle factors in a burst. This can be generalized as

Bm ω(r) = min(2
r−log2(

2W

Sd
)
,
P · C · Sd

W
, M)B (5.12)

Given Equations (5.6) to (5.12), Tm b(r), the memory latency for a burst of

radix-2 butterfly operations, one for each PE, in stage r, can be estimated by

Tm b(r) = Tld p(Bm x(r), Bm ω(r)) + Tst p(Bm x(r)) (5.13)

Since the workload is evenly distributed to all PEs, and every PE performs

N
2P ·C

identical butterfly operations during each stage, the overall memory latency

for Algorithm PAR-R2-FFT can be approximated as

log2 N
∑

r=1

TM(r) =
N

2P · C

log2 N
∑

r=1

Tm b(r) (5.14)

With slight modifications to Equations (5.6) to (5.14), one can obtain the

overall memory latency for Algorithm PAR-R4-FFT. For example, to estimate the

latency for a pipelined load for a radix-4 butterfly, instead of having 3 loads for a

radix-2 butterfly shown in Equation (5.6), we simply substitute with 7 loads i.e., 4

for x and 3 for ω.

factor, and the next one holds at least (W
Sd

− 1) twiddle factors. However,
the occurrences are few along the computation, and we approximate it as the
bandwidth of a single bank.

67



5.3.4 Estimated Computation Time

To estimate the computation time, we examine the generated instruction

sequence of the computation kernel, and use a simplified PE model to approximate

the execution time, under ideal conditions: no interference from other PEs, no

instruction fetch delays, and perfect branch prediction.

Since memory latency has already been taken care of in Section 5.3.3, all

memory instructions are removed from the instruction sequence. The PE model

executes the remaining instructions in a pipelined way, i.e., one instruction per

cycle. Instructions are executed in-order, such that if one instruction is stalled due

to data dependence, no later instruction can be issued. Special care needs to be taken

when any shared hardware resource in a core is competed by PEs. Our PE model

simply “perfect shuffles” P sets of such instructions into a new sequence, in which

all original data dependence relation is preserved, and executes this interleaved

sequence. The estimated execution time of this interleaved instruction sequence is

used as the execution time of a single set on this PE model. Given this model and

the architecture specification, we can express TC as a function of N , P , and C.

5.3.5 Estimated Barrier Overhead

Given the complexity and variety of barrier implementations, it is difficult

to estimate TB without knowing the details of the real architecture/software. We

thus propose an experiment-based approach in our modeling. This approach makes

every PE call the barrier function many times, and reports the average elapsed time

per call. In this way, we can obtain the cost function of the barrier waiting time as

a function of P and C.

5.4 Case Study: IBM Cyclops-64

In this section we evaluate our performance model in the context of the IBM

C64 chip architecture. We first instantiate the cost functions the algorithms with
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C64 architectural parameters. For simplicity, only the instantiation procedure of

Algorithm PAR-R2-FFT is given. Then we evaluate our performance model by

comparing the predicted performance with the experimental results.

5.4.1 Instantiation of Cost Functions

The C64 architecture is an instance of the abstract architecture model pro-

posed in Section 5.1. C64 features an explicitly addressable three-level memory

hierarchy, including 160 local memories (LMs), one for each PE, 160 on-chip global

memories (GMs), and 4 off-chip GMs. Both on-chip GMs and off-chip GMs are

interleaved by a 64-byte boundary, and are accessible to all PEs on a chip.

All cores and memory banks are connected to an on-chip pipelined crossbar

switch with 96× 96 ports. In particularly, 80 ports are shared by 160 on-chip GM

units, and 4 ports connected to the off-chip GM controllers. Each port can consume

one request packet and send up to 8-byte data to the network/memory in one cycle,

while all the other packets waiting in an associated FIFO queue.

As a summary, Table 5.2 lists major architectural parameters of C64. WGM is

the granulate of interleaved on-chip GMs. Since two on-chip GMs share one crossbar

switch port, it can be approximated that there are 80 on-chip GM banks that are

interleaved by a 128-byte boundary.

Table 5.2: Summary of C64 Architectural Parameters
C 80
P 2
M 80
O 4

Bin 8 bytes/cycle
Bout 8 bytes/cycle
LLM 1 cycle
Bnet up to 1140 bytes/cycle
B 8 bytes/cycle

WGM 128 bytes
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Cost function for computation time. By examining the instruction sequence

generated for Algorithm PAR-R2-FFT on C64, it turns out that a butterfly

kernel is implemented by 14 integer instructions and 10 floating-point instruc-

tions, besides memory operations. According to the simplified PE execution

model proposed in Section 4.4, 14 integer instructions can be completed in 14

cycles, and the interleaved 2 sets of floating-point instructions, one set from

each PE, can be finished in 20 cycles. A butterfly kernel then can be accom-

plished in 14+20 = 34 cycles, and the cost function for computation time is given by

TC = 34 ·
N

2P · C
=

17N

2C
(5.15)

Cost functions for memory latency. Equation (5.6) and Equation (5.6) in

Section 4.5 formulate the pipelined memory load and store latency, respectively.

In our experiments both x and ω are double-precision complex numbers stored in

on-chip GMs, hence Sr and Sd, the size of a memory access request/response with

respect to a single data point, are both 16 bytes. By substituting variables in Equa-

tions (5.6) and (5.6) with architectural parameters summarized in Table 5.2, we have

Tld p(r) = 51 + max(
8C

Bm x(r)
,

4C

Bm ω(r)
) (5.16)

Tst p(r) = 22 +
8C

Bm x(r)
(5.17)

Both Bm x(r) and Bm ω(r) can be calculated from Equation (5.8) to (5.12) in

the similar way. Due to the space limitation, we simply skip the detailed substitution

here.

An investigation on instruction sequence of the butterfly kernel reveals that

Tst p can be mostly hidden in computing a butterfly stage because one PE can

start executing the next butterfly before the store requests issued in the current

butterfly to complete. Therefore, we ignore Tst p in the estimation of the memory
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latency of a butterfly operation. Thus the cost function for estimating the overall

memory latency is given by

log2 N
∑

r=1

TM(r) =
N

4C

log2 N
∑

r=1

Tld p(r) (5.18)

Cost function for barrier synchronization. We have evaluated the average

waiting time of the barrier implementation in the C64 TiNy Threads (TNT)

library [42], when all PEs enter the barrier simultaneously. Using the technique

of curve fitting, the cost function of the barrier waiting time (with respect to the

number of cores) is roughly approximated by

TB = 6C + 203 (5.19)

5.4.2 Evaluations and Discussions

In this section, we present a set of extensive evaluations of the proposed

performance model. We are particularly interested in the following aspects:

1. Estimated execution time on each stage;

2. Performance impact as the input problem size varies;

3. Performance impact as the number of cores varies;

4. Performance impact as the algorithm changes;

5. Performance impact as the architectural parameters change.

We compare our estimations with experimental results obtained from FAST,

the C64 simulator [40]. The experimental results show an average relative error of

16%, when running on up to 16 cores. This average relative error increases as more

cores are used, and it reaches 29% at 64 cores. It is worth to note that similar results

were obtained on a preliminary version of the real C64 chip.
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Estimated execution time on each stage. We first want to compare the pre-

dicted execution time of each individual computation stage (plus the waiting time

of the following barrier) with the experimental result, since its accuracy is the fun-

damental requirement for our subsequent analysis. Figure 5.6 and Figure 5.7 show

such comparison when computing a 210-point FFT with Algorithm PAR-R2-FFT

and Algorithm PAR-R4-FFT, respectively. It can be observed that our performance

model can predict the time spent on each stage with relative accuracy. Both figures

show that the predicted time is 1%− 29% higher than the experimental execution

time when running on up to 16 cores (part of the data are not shown in the figure).

This difference is probably caused by our assumption that all instructions in a but-

terfly calculation must be stalled until all input data points, and the twiddle factors

are loaded. In the actual system, however, one instruction can be executed as soon

as all its operands are available and all its dependence relation is resolved, hence a

long stall expected in our model can be avoided.

It can be also observed that when more cores are used (e.g., up to 64 cores),

the predicted time is 5% − 31% lower than the experimental execution time (part

of the data are not shown in the figure). One possible reason for this difference

is that the behavior of the crossbar network cannot be accurately captured by the

current method under heavy traffic. We expect that this issue could be alleviated

by incorporating a more accurate network model into our performance model.

Performance impact as the problem size varies. We investigate how the pre-

dicted execution time and performance change as a function of the problem size,

when running on varied number of cores. The results of Algorithm PAR-R2-FFT

are summarized in Figure 5.8 and Figure 5.9. Both figures demonstrate that our

performance model correctly predicts the performance trend as the problem size

increases, when compared with the experimental execution time and performance.
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Figure 5.6: Execution Time of Individual Stages, Algo. PAR-R2-FFT
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Figure 5.9 shows that, when running on a large number of cores (e.g., 64 cores), the

performance increases as the increase of the problem size, while it keeps flat when

running on a small number of cores.
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Figure 5.8: Total Execution Time versus the Problem Size, Algo. PAR-R2-FFT

Performance impact as the number of cores varies. We now show how the

performance for a fixed input size changes with the number of cores. As shown

in Figure 5.10, the estimations closely match the experimental results for all three

problem sizes, when running on up to 32 cores. The difference between predicted

and simulated performance is becoming rather noticeable, when running on a large

number of cores, i.e., up to 29% difference when running on 64 cores. One possible

reason is the inaccurate modeling under heavy traffic. Figure 5.11 shows the corre-

sponding speedup curves.

Performance impact as the algorithm changes. From Figure 5.6 we can ob-

serve that when running on a large number of cores, the first several stages take
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Figure 5.10: Performance versus the Number of Cores, Algo. PAR-R2-FFT
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a much longer time than the rest of stages. A careful investigation into both al-

gorithms indicates that it is probably caused by the contention delay on loading

the shared twiddle factors. For example, recall that 2i−1 (1 ≤ i ≤ log2N) distinct

twiddle factors are used in the i-th stage of Algorithm PAR-R2-FFT. In the first

several stages a large number of PEs compete for loading a small number of twid-

dle factors, resulting in intensive contentions. Based on our performance model,

both the accessing latency and the contention in the first stages could be greatly

reduced, if each PE keeps a local copy of twiddle factors in its associated LM. We

then revised Algorithm PAR-R2-FFT according to this idea. We call this revised

algorithm PAR-R2LM-FFT. Due to the limited size of the LM on the C64, in the

real implementation, only twiddle factors used in stage 1 to 6 are stored in each PE’s

associated LM. In the rest of the stages, PEs still have to load the twiddle factors

from GMs. The predicted execution time and the experimental execution time of Al-

gorithm PAR-R2LM-FFT for a 210-point FFT are shown in Figure 5.12. Compared
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with Figure 5.6, this new algorithm shows significant performance improvement in

the first 6 stages. However, even in the improved algorithm, memory access oper-
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Figure 5.12: Execution Time of Individual Stages, Algo. PAR-R2LM-FFT

ations still cost about 300% − 500% more time than floating-point operations in a

butterfly. This also explains why the achieved performance is far below the theoretic

peak performance. One way to improve the performance is to use algorithms con-

cerning data reuse, like higher radix algorithms , which can reduce memory traffic

significantly. As shown in Figure 5.13, PAR-R4-FFT doubles the performance for

various problem size - system configuration combinations, compared with PAR-R2-

FFT. Our performance model shows that up to 140% performance gain could be

achieved if a radix-8 FFT algorithm is used, compared with PAR-R2-FFT.

Performance impact as the architectural parameters change. Program-

mers and architects often want to know the performance impact of architectural

changes to the existing algorithms. To this end, we consider a hypothetical many-

core machine, C64+, which has the exact same configuration as C64, except that

77



5 6 7 8
0

1

2

3

4

5

6

7

Log
4
(Problem size)

P
e

rf
o

rm
a

n
c
e

 (
G

fl
o

p
s
)

1 core (experiment)
1 core (prediction)
4 cores (experiment)
4 cores (prediction)
16 cores (experiment)
16 cores (prediction)
64 cores (experiment)
64 cores (prediction)

Figure 5.13: Performance versus the Problem Size, Algo. PAR-R4-FFT

each core now has 4 PEs, instead of 2 in the original C64 design. We then apply

our performance model with architectural parameters of this C64+ for Algorithm

PAR-R2-FFT.

Figure 5.14 shows the predicated performance data for a 210-point FFT and a

216-point FFT. From the figure we can observe that adding more PEs to a core does

not yield a significant gain of performance for our FFT algorithm. In particular,

for the problem size of 210-point, using more than 16 cores even has a negative

performance impact. This is probably due to the increased memory contention

delay and the longer barrier waiting time.

5.5 Related Work

A model-driven DFT performance predictor is proposed in [67] to replace

the empirical search engine in FFTW. The predictor first models the performance

of several frequently used DFT algorithms and DFT codelets (in FFTW), it then
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Figure 5.14: Performance Predication for C64+, Algo. PAR-R2-FFT

builds the optimization engine based on those individual DFT models. The pa-

rameters for these models are obtained via extensive experiments on the target

architecture. The plans produced by the predictor have comparable performance

to those plans generated by the empirical search in FFTW. It is not clear how to

extend this work to utilize multiple processing elements on many-core architectures.

Mathematical model is used in [92] to represent the Cooley-Tukey FFT algorithm

as a linear sequence of computational stages. Then, a set of base FFT problems (of

different sizes) need to be evaluated on the target architecture to extract the per-

formance features and calibrate the model. This model has been validated on the

CELL architecture. Results show that the predicated execution time is very close

to the actual measurement. The work reported in [52] shows that a properly built

analytical model can successfully find the best DFT algorithms in SPRIAL even

the predicated runtime is not accurate. This model incorporates details of the tar-

get architecture’s memory system, including the TLB, branch prediction, physically

addressed caches and hardware prefetching. Unlike these studies, our performance
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model does not require running many test cases to adjust the model to fit the actual

runtime behaviors of the program. It is obtained only based on the architecture

specifications (except the modeling of the barrier overhead).

Performance modeling of FFT is conducted by Cvetanović [153] for an ab-

stract shared memory architecture. The work investigates the impact of the data

layout on the memory access latency. Closed-form performance expressions are de-

rived for the best-case and worst-case data layout. This work also approximates

that memory operations regarding the input samples are issued by all processors

in a burst. Our work differs from this work in several ways. First, while no spe-

cific algorithm is studied in [153], we present detailed analyses of two parallel FFT

algorithms, together with experimental results on the real system. Secondly, the

former study does not consider the memory traffic generated for loading the twiddle

factors, and it assumes that the same network contention is produced during each

stage, which may not be realistic for all FFT problems. Our work investigates both

issues, and take into account their effects upon the execution behaviors.

The technique of using instruction count to estimate the FFT performance is

also used in [105], where several FFT algorithms are analyzed for IBM RP3 system.

However, the work treats memory and synchronization delays as constants. Since

the memory latency may vary due to the different memory access patterns through

the execution, this assumption affects the accuracy of the results. Such issue has

been explicitly taken into account into our analysis.

5.6 Summary

In this chapter, we have presented a model for performance prediction of

parallel Cooley-Tukey FFT algorithms for a many-core architecture. By describing

the algorithm and the performance model with respect to an abstract architecture,

the analysis techniques presented in this chapter can be applied to other similar

systems with minor changes. Due to the regular structure of the FFT problem, we
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decomposed the execution of a FFT problem into three parts, i.e., memory accesses,

computation, and synchronization. We derived closed-form cost functions for each

of the parts. We instantiated the cost functions of the FFT algorithms and the

performance model in the context of the IBM Cyclops-64. The experimental results

demonstrate the effectiveness of our performance model methodology.
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UNIT-ENABLED SYSTEMS

82



Chapter 6

NVIDIA CUDA

CUDA stands for Compute Unified Device Architecture, a parallel architec-

ture developed by NVIDIA for general purpose parallel computing. In this chapter

we provide a brief introduction of the CUDA architecture and the programming

model1. More details are available on the CUDA website [108]. In the literature,

GPUs and CPUs are usually referred to as the devices and the hosts, respectively.

We follow the same terminology in this dissertation.

6.1 CUDA Architecture

Figure 6.1 shows the hardware model of CUDA. CUDA devices have one or

multiple streaming multiprocessors (SMs), each of which consists of one instruction

issue unit, eight scalar processor (SP) cores for integer and single-precision floating-

point arithmetic operations, two special function units for single-precision floating-

point transcendental functions, and on-chip shared memory. For some high-end

devices, the SM also has one double-precision floating point unit.

CUDA architecture features both on-chip memory and off-chip memory. The

on-chip memory consists of the register file, shared memory, constant cache and

texture cache. The off-chip memory consists of the local memory and the global

memory. Local memory is mainly used to store automatic variables in the GPU

program. Shared memory has 16 banks that are organized such that successive

1 We focus on the CUDA architecture of compute capability 1.x in this chapter.
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Figure 6.1: CUDA Hardware Model

32-bit words are assigned to successive banks. Both the constant cache and the

texture cache are read-only, and are used to cache data reading from the off-chip

memory. Constant cache is shared by all functional units in a SM to speed up reads

from the constant memory space, which resides in the off-chip memory. The texture

cache is shared by 2 or 3 SMs (based on the device design) to speed up reads from

the texture memory space, which resides in the off-chip memory. Since there is no

ordering guarantee of memory accesses on CUDA architectures, programmers may

need to use memory fence instructions to explicitly enforce the ordering, and thus

the correctness of the program. The host can only access the global memory of
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the device. On some devices, part of the host memory can be pinned and mapped

into the device’s memory space, and both the host and the device can access that

memory region using normal memory load and store instructions.

A CUDA program consists of two parts. One part is the portions to be exe-

cuted on the CUDA device, which are called kernels; another part is to be executed

on the host, which we call the host process. The device executes one kernel at a

time, while subsequent kernels are queued by the CUDA runtime. When launching

a kernel, the host process specifies the thread hierarchy to be used for the kernel exe-

cution. This thread hierarchy defines how many threads are required to execute the

kernel, and how many thread blocks (TB) these threads should be equally divided

into. Each thread that execute the kernel is given a unique thread index within a

TB, which is a 3-component vector. So that threads within a TB can form a 1D,

2D, or 3D thread space. This provides an convenient way to invoke computation

across the elements in a domain such a vector, matrix, or volume. There is a limit to

the number of threads per TB, since all thread of a TB share the limited hardware

resource of a same SM. TBs are organized into a 1D or 2D grid. The number of

TBs in a grid is usually dictated by the size of data being processed or the number

of SMs in the system. Figure 6.2 shows an example of such a grid-block-thread

hierarchy.

Figure 6.2: Example of CUDA Thread Hierarchy
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A thread can obtain its logic thread index within a TB and its logic TB index

via built-in system variables. The hardware schedules and distributes TBs to SMs

with available execution capacity. One or multiple TBs can reside concurrently on

one SM, given sufficient hardware resources, i.e., register file, shared memory, etc.

TBs do not migrate during the execution. As they terminate, the hardware launches

new TBs on these vacated SMs, if there are still some TBs to be executed for this

kernel. Each thread is mapped to one SP core, and is executed independently.

Moreover, the SM manages the threads in groups of 32 threads called warps, in the

sense that all threads in a warp execute one common instruction at a time. Branch

divergences occurred within a wrap will serialize the different execution paths, which

can significantly degrade the performance.

On the device, the global, constant, and texture memory spaces are persistent

through the execution of a kernel. Each thread has its own private local memory.

All threads can access the global memory space, but only threads within a TB can

access the associated shared memory with very low latency. When accessing the

global memory, memory loads and stores by threads of a half warp are coalesced

by the device into as few as one transaction when certain access requirements are

met. For CUDA programs, it is very important to coalesce global memory accesses

to reduce the memory traffic and overall latency.

While CUDA provides a barrier function to synchronize threads within a TB,

it does not provide any mechanism for communications across TBs. However, with

the availability of the atomic instructions and memory fence functions, it is possible

to achieve inter-TB communications.

6.2 Software Toolkit

The CUDA software toolkit contains the tools needed to compile and build

a CUDA application. It includes following basic components.
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• CUDA driver API: A language-independent, lower-level API that handles

binary or assembly code. Using this API implies direct dealing with initial-

ization, module management, context management, etc.

• CUDA C: A set of extensions to the C language and a runtime library for

programming CUDA devices. These extensions allow programmers to define

a kernel as a C function and use some new syntax to specify the execution

environment each time the function is called. This runtime API is built

on top of the CUDA driver API, therefore many operations are performed

implicitly and resulting code is simpler than using CUDA driver API.

• nvcc: The CUDA compiler driver. It first separates the device functions and

the host functions from the source code. It then compiles the device functions

using NVIDIA compilers/assemblers, and using the specified (available on the

host platform) C/C++ compiler to compile the host functions. After both de-

vice functions and host functions have been compiled, it embeds the compiled

device functions as load images in the host object file.

• cuda-gdb: An extension to the standard i386/AMD64 port of gdb. It is

designed to present the user with debugging environment that allows simulta-

neous debugging of GPU and CPU code.

• profiler: A performance analysis tool for collecting runtime information for

the execution of a CUDA program, such as CPU time, GPU time, memory

throughput, number of divergent branches, etc.
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Chapter 7

MOLECULAR DYNAMICS

Molecular dynamics (MD) simulations provide scientists a methodology for

studying microscopic world on the molecular scale. Rather than attempting to

deduce microscopic behavior directly from theories, the MD method tries to ap-

ply the constructive approach to reproduce the behavior using various models and

computer simulations. Many scientific and engineering branches use MD as a fun-

damental method, e.g., physics, chemistry, biochemistry, material science, etc. The

continually increasing power of computers makes it possible to pose questions of

greater complexity, with a realistic expectation of obtaining meaningful answers in

these fields. In this chapter we provide a brief introduction of the MD simulations.

We will use the term atom and particle interchangeably.

7.1 Introduction

MD is a simulation method of computing dynamic particle interactions on the

molecular or atomic level. Such simulation consists of the numerical, step-by-step,

solution of the classical equations of motion, where the laws of classical mechanics

are followed, and most notably Newton’s law,

mir̈i = Fi (7.1)

for each atom i in a system constituted by N atoms. Here, mi is the atom mass,

rN = (ri, · · · , rN) is the complete set of 3N atomic coordinates, r̈i = ai is its ac-

celeration, and Fi is the force acting upon it, due to the interactions with other
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atoms. These interactions are simulated using a distance calculation, followed by

a force calculation. Force calculations are usually composed of non-bonding forces

and bonded forces. When the net force for each particle has been calculated, new

positions and velocities are computed through a series of motion estimation equa-

tions. The process of net force calculation and position integration repeats for each

time step of the simulation. MD is a deterministic technique. Given the initial

input data, e.g., positions, velocities, temperature, etc, the physical quantities of

the system for each subsequent time step are in principle completely determined.

7.2 Molecular Interactions

To accurately model the physical system in a MD simulation, the most im-

portant issue is to choose the potential: a function U(rN) of “the positions of the

nuclei, representing the potential energy of the system when the atoms are arranged

in that specific configuration”[46].

Forces then can be derived as the gradients of the potential with respect to

atomic displacements,

Fi = −
∂

∂ri
U(rN ) (7.2)

The mechanical molecular model uses springs to simulate molecular bonds

and spheres that connect atoms. Then the classic mathematics of spring deformation

can be used to model the behaviors of bonds. Non-bonded atoms (greater than

two bonds apart) interact through van der Waals attraction [66], and electrostatic

force [65]. Therefore, a simple potential function for the system is given by

U(rN ) = Ubonding(r
N) + Unon−bonded(r

N) (7.3)

7.2.1 Bonding Potentials

For considering the intra-molecular bonding interactions, the following simple

molecular model can be used,
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Ubonding(r
N) = 1/2

∑

bonds

kr
ij(rij − req)

2 (7.4)

+ 1/2
∑

bend angles

kθ
ijk(θijk − θeq)

2 (7.5)

+ 1/2
∑

torsion angles

∑

m

kφ,m
ijkl (1 + cos(mφijkl − γm)) (7.6)

Equation 7.4 estimates the energy associated with vibration about the equi-

librium bond length, which typically involves the separation rij = |ri − rj | between

adjacent pairs of atoms in a molecular framework. In the equation, kr
ij controls the

stiffness of the bond spring, req defines its equilibrium length. Unique kr
ij and req

parameters are assigned to each pair of bonded atoms based on their types.

Equation 7.5 estimates the energy associated with vibration about the equi-

librium bond angle. In the equation, kθ
ijk controls the stiffness of the angle spring,

while θeq defines it equilibrium angle. The “bend angles” θijk are between successive

bond vectors such as ri−rj and rj−rk, and therefore involve three atom coordinates,

cosθijk = r̂ij · r̂jk (7.7)

= (rij · rij)
−1/2(rjk · rjk)

−1/2(rij · rjk)

where r̂ = r
||r||

is the unit vector.

In the above model, Equation 7.6 represents the amount of energy that makes

the total energy consistent with the real physical world for modelling a torsion angle.

In the equation, the “torsion angles” φijkl are defined in terms of three connected

bonds, i.e., four atomic coordinates:

cosφijkl = −n̂ijk · n̂jkl (7.8)

where nijk = rij × rjk, njkl = rjk × rkl, and n̂ is the unit vector normal to the plane

defined by each pair of bonds. kφ,m
ijkl controls the amplitude of the curve, m controls
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its periodicity, and γm shifts the entire curve along the rotation angle axis φijkl.

Unique parameters for torsional rotation are assigned to each bonded quartet of

atoms based on their types.

7.2.2 Non-bonded Interactions

The potential energy Unon−bonded represents non-bonded interactions between

atoms. It is typically split into 1-body, 2-body, 3-body, . . ., terms:

Unon−bonded(r
N) =

∑

i

u(ri) +
∑

i

∑

j>i

u(ri, rj) + · · · (7.9)

The u(r) term is an externally applied potential field or the effects of the container

walls. The clause j > i in the second summation of the 2-body term is used to

make sure each atom pair will only be considered once. Traditionally, three-body

and higher order interactions are neglected in the simulation. Also, for fully periodic

simulations, u(r) is ignored. Therefore, it is usual for MD simulations to concentrate

on the pair potential u(ri, rj) = v(rij). Then a simple choice for Unon−bonded is to

write it as a sum of pairwise interactions,

Unon−bonded(r
N) =

∑

i

∑

j>i

u(ri, rj) (7.10)

The development of accurate potentials represents an important research

field. There is an extensive literature on the way these potentials are determined

experimentally, or modeled theoretically. In this study, we only concentrate on

the most commonly used pair-potentials model, the Lennard-Jones pair potential,

and Coulomb potentials if electrostatic charges are present. These two models are

usually sufficient for representing the essential physics for many simulations.

Lennard-Jones potential

The Lennard-Jones potential (LJ) [91] is a mathematically simple model that

describes the interaction between a pair of neutral atoms or molecules.
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The LJ potential is given by the expression

uLJ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (7.11)

for the interaction potential between a pair of atoms, where ε is the depth of the

potential well, σ is the finite distance at which the inter-particle potential is zero,

and r is the distance between the particles.

The r−12 term, dominating at short distance, models the repulsion between

atoms when they are brought very close to each other. The r−6 term, dominating

at large distance, models the attraction between atoms, which gives cohesion to the

system. The parameters ε and σ are chosen to fit the physical properties of the

material.

Coulomb potential

When the electrostatic interactions between electrically charged particles are

considered, Coulomb potentials [65] are usually added to the simulation. It is ex-

pressed as the following equation,

uCoulomb(r) =
Q1Q2

4πǫ0r
(7.12)

where Q1 and Q2 are the charges, ǫ0 is the permittivity of free space, and r is the

distance between two charged particles.

Potential truncation and long-range corrections

The potentials in Equation 7.11 and 7.12 have an infinite range. In practical

applications, it is customary to establish a cutoff radius Rc and disregard the inter-

actions between atoms separated by more than Rc, under the assumption that only

atoms which are sufficiently close actually interact with each other. This approach

results in enormous savings of computer resources, because the number of atomic

pairs separated by a distance r grows as r2 and becomes quickly huge.
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However, if we simply ignore an atom pair when it is beyond the cutoff

distance, it would induce a jump in the energy, which may induce errors in energy

conservation in a simulation. This problem is usually amended by shifting the

potential to make it vanishing at the cutoff radius. For example, the LJ potential

with the cutoff radius can be rewritten as following,

ULJ =

{

uLJ(r)− uLJ(Rc), r ≤ Rc

0, r > Rc

(7.13)

Commonly used truncation radii for the LJ potential are 2.5σ and 3.2σ.

7.3 Time Integration

Time integration algorithms are the engine of MD simulations. They inte-

grate the equation of motion of the interacting particles and follows their trajectory.

In this section, we review one of the most popular integration methods for MD

simulations, the Verlet algorithm.

The basic idea of the Verlet algorithm [151] is to write two third-order Taylor

expansions for the positions r(t), one forward and one backward in time, as follows,

r(t +△t) = r(t) + v(t)△t +
1

2
a(t)△t2 +

1

6
b(t)△t3 + O(△t4) (7.14)

r(t−△t) = r(t)− v(t)△t +
1

2
a(t)△t2 −

1

6
b(t)△t3 + O(△t4) (7.15)

where t is the current time,△t denotes the size of the timestep used for the numerical

integration, v is the velocity, a is the acceleration, and b is the third derivative of r

with respect to t.

Adding Equation 7.14 and 7.15, we have the basic form of the Verlet algo-

rithm,

r(t +△t) = 2r(t)− r(t−△t) + a(t)△t2 + O(△t4) (7.16)

Note that a(t) can be obtained with the Newton’s laws as follow,

a(t) = F/m = −
∂

∂r
U(rN )/m (7.17)
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7.4 Related Work

MD simulations are computationally intensive. In practice, these simulations

have always been limited by the current available computing power. In general,

approaches to speedup these computations can be divided into two categories: 1)

those that simplify models and identify what may be neglected while still obtain

acceptable results, and 2)those that do not affect the accuracy but seek to grain

speed by the software or hardware. Among the most prominent practical approaches

in the second category is parallel computation. In the past, commodity PC cluster

and grids have been used to provide more accessible high performance power at low

cost. Therefore, many general purpose MD codes have been developed for clusters,

for example, LAMMPS [118], DLPOLY [133], GROMACS [19], and NAMD [116].

However, this cluster-based approach suffers from scalability issues due to the high

latencies for communicating between compute nodes when the number of nodes

becomes large. Hence, this approach is only suitable for MD simulations with a large

number of separate trajectories with short time scales. On the other hand, special-

purpose architectures have been used for the MD simulations as well. Examples

include Anton [129], FASTRUN [50], Protein Explorer [139], and MD Engine [146].

In general, arithmetic units have been specifically designed for accelerating certain

MD simulations. The problem with this approach is obvious: these architectures

usually do not have the flexibility to run a variety of algorithms/applications if they

cannot utilize the specially designed hardware features.

Recently, some studies have successfully tackled the problem of analyzing,

evaluating and migrating MD applications to many-core GPUs. These studies

demonstrated that kernels of a general purpose molecular dynamic code can run

effectively on GPU-enabled systems with performance speedup up to 100-fold over

a traditional single-core CPU implementation [7, 18, 45, 117, 121, 135, 148, 158].

Such performance is mainly achieved by carefully choosing optimizations to match
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the capabilities of the hardware, including the concurrent code execution on CPU

and GPU. Another molecular dynamic application has been accelerated 16 times

respect to an optimized implementation on a modern dual-core using the Cell pro-

cessor [113]. The folding@home client of Stanford [1] achieved a GPU speedup of

100x compared to a single core of a modern processor.

One of the common approaches used to parallelize MD simulations is atom-

decomposition [132]. Atom-decomposition assigns the computation of a subgroup of

atoms to each processing element (PE). Hereafter we assume that the N atom posi-

tions are stored in a linear array, A. We denote P as the number of PEs. A simple

atom-decomposition strategy may consist in assigning N/P atoms to each PE. As

simulated systems may have non-uniform densities, it is important to create balanced

sub-group of atoms with similar number of forces to compute. Non-uniformity is

found for instance in gas simulation at molecular level with local variation of temper-

ature and pressure [20]. The computational reason of this load unbalancing is that

there is not direct correspondence between the atom position in A and the spatial

location in the 3D space. Two common approaches exist in literature to overcome

this problem: randomization and chunking. They are both used in parallel imple-

mentations of state-of-the-art biological MD programs such as CHARMM [24] and

GROMOS [33]. In randomization, elements in the array A are randomly permuted

at the beginning of the simulation, or every certain amount of time steps in the sim-

ulation. The array A is then equally partitioned among PEs. In chunking, the array

of atoms A is decomposed in more chunks than P , the number of available PEs.

Then each PE performs the computation of a chunk and whenever it has finished,

it starts the computation of the next unprocessed chunk.

For large scale MD simulations, the system is usually spatially decomposed

into small 3D boxes that have a size slightly greater than or equal to the cutoff

radius. In this case, for a box in the MD system, the interactions only have to be
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evaluated with regard to this box and its 26 neighbor boxes (27 boxes in total). This

approach greatly reduce the overall communication cost, however these boxes may

contain different numbers of atoms depending on the biological structure simulated.

Figure 7.1 shows a 2D example of such decomposition, where the system has been

decomposed into 16 boxes. We label these boxes with number 1 − 16. Each box

contains various numbers of atoms. As shown in Figure 7.1(a), the calculation of

(a) Workload for Box-6 (b) Workload for Box-7

Figure 7.1: Example of MD Boxing

the forces for the atoms in box-6 is computed by evaluating the interactions of the

atoms in box-6 itself and with the atoms in the non-empty boxes surrounding it,

i.e., box-1, -3, -7, and -9. This calculation involves 13 atoms in total. Similarly,

as shown in Figure 7.1(b), the calculation of the forces for the atoms in box-7

involves 27 atoms. While the number of atoms in each box is known and so the

number of distances to calculate per each box to boxes interaction, the number

of force calculations is unknown until the distances are actually evaluated. If the

computation of the interactions among these atoms is performed by multiple PEs,

the problem of load balancing among PEs is evident: different PEs will receive
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different boxes with different atoms. Also note that balancing the workload among

PEs using the number of particles in each sub-box to sub-boxes interaction does not

solve the problem as this number is only the upper limit of the number of forces

to compute, i.e., it is impossible to know beforehand how many particles will be

actually close enough to exert a force.
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Chapter 8

FRAMEWORK DESIGN

8.1 Motivation

Many-core GPUs have become an important computing platform in many

scientific fields due to the high peak performance, cost effectiveness, and the avail-

ability of user-friendly programming environments, e.g., NVIDIA CUDA [108] and

ATI Stream [6]. In the literature, many works have been reported on how to harness

the massive data parallelism provided by GPUs [22, 31, 71, 103, 107, 122, 126, 152].

Beyond single-GPU systems, there is a growing interest in exploiting multiple GPUs

for scientific computing [47, 62, 64, 76, 117, 136]. The main benefit of using multi-

GPU systems is that such systems can provide a much higher performance potential

than the single-GPU systems. Further, multi-GPU systems can overcome certain

limitations associated with the single-GPU systems, e.g., limited global memory.

Also, these works demonstrate that such platforms can be beneficial in terms of

power, price, etc.

However, issues, such as load balancing and GPU resource utilization, can-

not be satisfactorily addressed by the current GPU programming paradigm. For

example, as shown in Section 9.3, CUDA scheduler cannot handle the unbalanced

workload efficiently. Also, for problems that do not exhibit enough parallelism to

fully utilize the GPU, employing the canonical GPU programming paradigm will

simply underutilize the computation power. These issues are essentially due to fun-

damental limitations on the current data parallel programming methods. On the
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other hand, some applications do require a more refined execution behavior on GPU-

enabled systems than CUDA. For example, as suggested in [117], a fine-grained GPU

execution model would allow fine-grained message-driven applications to overlap the

communication with the computation on GPU clusters.

In this chapter, we propose a fine-grained task-based execution framework

that can dynamically balance workload on individual GPUs and among GPUs, and

thus utilize the underlying hardware more efficiently.

Introducing tasks on GPUs is particularly attractive for the following rea-

sons. First, although many applications are suitable for data parallel processing, a

large number of applications show more task parallelism than data parallelism, or a

mix of both [29, 120]. Having a task parallel programming scheme will certainly fa-

cilitate the development of this kind of applications on GPUs. Second, by exploiting

task parallelism, it is possible to show better utilization of hardware features. For

example, task parallelism is exploited in [112] to efficiently use the on-chip memory

in the GPU. Third, in task parallel problems, some tasks may not be able to expose

enough data parallelism to fully utilize the GPU. Running multiple such tasks on

a GPU concurrently can increase the utilization of the computation resource and

thus improve the overall performance. Finally, with the ability to dynamically dis-

tribute fine-grained tasks between CPUs and GPUs, the workload can potentially

be distributed properly to the computation resources of a heterogeneous system,

and therefore achieve better performance.

However, achieving task parallelism on GPUs can be challenging; the ma-

jority of the conventional NVIDIA CUDA programming methodologies and tech-

niques implies that programmer-defined functions should be executed sequentially
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on the GPU1. Open Computing Language (OpenCL) [87] is an emerging program-

ming standard for general purpose parallel computation on heterogeneous systems.

It supports the task parallel programming model, in which computations are ex-

pressed in terms of multiple concurrent tasks where a task is a function executed

by a single processing element, such as a CPU thread. However, this task model is

basically established for multi-core CPUs, and does not address the characteristics

of GPUs. Moreover, it does not require a particular OpenCL implementation to

actually execute multiple tasks in parallel.

Next we first present a queue-based design for single-GPU systems. We then

generalize the idea and extend it to multi-GPU systems as a general fine-grained

task-based execution framework for GPU-enabled systems.

8.2 Design for Single-GPU Systems

In this section, we first describe the basic idea of the fine-grained task-based

execution. Then we discuss the necessary mechanisms to perform host-device inter-

actions correctly and efficiently, and then present the design for single-GPU systems

in detail.

8.2.1 Basic Idea

With the current CUDA programming paradigm, to execute multiple tasks,

the host process has to sequentially launch multiple, different kernels, and the hard-

ware is responsible for arrange how kernels run on the device [109]. This paradigm

is illustrated in Figure 8.1. On the other hand, in our design, instead of launching

multiple kernels for different tasks, we launch a persistent kernel with B thread

1 The latest NVIDIA Fermi architecture supports only 4 concurrent kernels (will
increase to 16). Our approach can provide even finer-grained concurrent exe-
cution, and can also be applied to this new architecture to further improve its
utilization.
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Figure 8.1: CUDA Programming Paradigm

blocks (TBs), where B can be as big as the maximum number of concurrently ac-

tive TBs that a specific device can support. Since CUDA will not swap out TBs

during their execution, after being launched, all TBs will stay active, and wait for

executing tasks until the kernel terminates. When the kernel is running on the de-

vice, the host process enqueues both computation tasks and signaling tasks to one

or more task queues associated with the device. The kernel dequeues tasks from

the queues, and executes them according to the pre-defined task information. In

other words, the host process dynamically controls the execution of the kernel by

enqueuing tasks, which could be homogeneous or heterogeneous. This task queue

idea is illustrated in Figure 8.2. Because of the nature of the task queue idea, we
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Figure 8.2: Fine-grained Task Queue Paradigm

require that the host process can perform copies between the host memory and de-

vice memory concurrently with the kernel execution. This is called “asynchronous

concurrent execution” in CUDA, and is available on CUDA devices that support

the deviceOverlap feature.

8.2.2 Preliminary Considerations

Since task queues are usually generalized as producer-consumer problems,

let us first consider the single-producer single-consumer case. Algorithm 1 and

Algorithm 2 show the pseudo-code of enqueue and dequeue operations, respectively,

for such scenario on a normal shared memory system. queue is a shared buffer

between the producer and the consumer. start and end are indexes of next location

for dequeue and enqueue, respectively. At the beginning, both indexes are initialized

as 0. By polling start and end, the producer/consumer can determine if it can

enqueue/dequeue tasks.

If we want to establish a similar scheme for the host-device communication,

where the host process is the producer, and the kernel is the consumer, the following

questions have to be addressed properly.

The very first question is where to keep the queue and associated index
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Algorithm 1 ENQUEUE

Require: a task object task, a task queue queue of a capacity of size
Ensure: task is inserted into queue
1: repeat
2: l ← (end− start + size) (mod size)
3: until l < (size− 1)
4: queue[end]← task
5: end← (end + 1) (mod size)

Algorithm 2 DEQUEUE

Require: a task queue queue of a capacity of size
Ensure: a task object is removed from queue into task
1: repeat
2: l ← (end− start + size) (mod size)
3: until l > 0
4: task ← queue[start]
5: start← (start + 1) (mod size)

variables. For index variables, a näıve choice would be having end in the host’s

memory system, and having start in the device’s memory system. In this case, all

updates to index variables can be performed locally. However, this choice introduces

serious performance issue, i.e., each queue polling action requires an access to a

index variable in another memory system, which implies a transaction across the

host-device interface. This incurs significant latency (as shown in Section 9.1 for a

PCIe bus). On the other hand, having both start and end on one memory system

will not help; either the host process or the kernel has to perform two transactions

across the host-device interface, which actually aggravates the situation.

The second question is how to guarantee the correctness of the queue oper-

ations in this host-device situation. Since each enqueue/dequeue operation consists

of multiple memory updates, i.e., write/read to the queue and write to an index,

it is crucial to ensure the correct ordering of these memory accesses while across

the host-device interface. For example, for an enqueue operation described in Algo-

rithm 1, by the update of end (line-5) is visible to the kernel, the insertion of task
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(line-4) should have completed. If the ordering of these two memory accesses were

reversed by the hardware/software for some reason, the kernel will not be able to see

the consistent queue state, and therefore the whole scheme will not work correctly.

The final question is how to guarantee the correctness on accessing shared

objects, if we allow dynamic load balance on the device. Lock is extensively used for

this purpose. However, as presented in [28], a lock-based blocking method is very

expensive on GPUs.

With evolving GPU technologies, now it is possible to answer above ques-

tions by exploiting the new hardware and software features. More specifically, since

CUDA 2.2, a region of the host’s memory can be mapped into the device’s address

space, and kernels can directly access this region of memory using normal load/store

memory operations, provided that the device supports the canMapHostMemory

feature. By duplicating index variables, and cleverly utilizing this feature, as we

shall demonstrate in our design, the enqueue and dequeue operations can be re-

designed such that the queue polling only incurs local memory accesses, and at

most one remote memory access to an index variable is needed for a successful en-

queue/dequeue operation. This addresses part of the first question, i.e., where to

keep index variables.

The solution to the rest of the first question and the second question es-

sentially requires mechanisms to enforce the ordering of memory access across the

host-device interface. Memory fence functions are included in the new CUDA run-

time. But they are only for memory accesses (made by the kernel) to the global

and shared memory on the device. On the other hand, CUDA event can be used

by the host process to asynchronously monitor the device’s progress, e.g., memory

accesses. Basically, an event can be inserted into a sequence of commands issued

to a device. If this event is recorded, then all commands preceding it must have

completed. Therefore, by inserting an event immediately after a memory access to
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the device’s memory system and waiting for its being recorded, the host process

can guarantee that such memory operation has completed on the device, before it

proceeds. This is equivalent to a memory fence for the host process to access the

device’s memory system. However, at this moment, there is no sufficient mecha-

nism to ensure the ordering of memory accesses made by a kernel to the mapped

host memory [100]. In this case, if we had the task queues residing on the host

memory system, in the dequeue operation, the kernel cannot guarantee that the

memory read on the task object has completed before updating the corresponding

index variables. Therefore, the queue(s) can only reside in the global memory on

the device. On the whole, by having the queue(s) on the device, and using both the

event-based mechanism mentioned above and the device memory fence functions, we

can develop correct enqueue and dequeue semantics that consist of memory accesses

to both the host’s memory system and the device’s memory system.

With the advent of atomic functions on GPUs, such as fetch-and-add and

compare-and-swap, it is possible to allow non-blocking synchronization mechanisms.

This resolves the last question.

Here we summary all necessary mechanisms to enable correct, efficient host-

device interactions as follows.

1. Asynchronous concurrent execution: overlap the host-device data trans-

fer with kernel execution.

2. Mapped host memory: enable the light-weight queue polling without gen-

erating host-device traffic.

3. Event: asynchronously monitor the device’s progress.

4. Atomic instructions: enable the non-blocking synchronization.
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8.2.3 Notations

Before we present the queue-based design, we first introduce terminologies

that will be used throughout the chapter. On a device, threads have a unique local id

within a TB, which is provided by the CUDA environment. In addition, each thread

has a unique thread lane within a warp, which indicates the logic index of this thread

in a warp. This index can be computed from the local id (within a TB) and the

warp size. host write fence() is the event-based mechanism described above, which

guarantees the correct ordering of memory stores made by the host process to the

device’s memory system. block write fence() is a fence function that guarantees that

all device memory stores (made by the calling thread on the device) prior to this

function are visible to all thread in the TB. warp write fence() is a fence function

that guarantees that all device memory stores (made by the calling thread on the

device) prior to this function are visible to all threads in the warp. block barrier()

synchronizes all threads within a TB. The above functions are either provided by

CUDA or implemented by us. Please refer to Section 9.1 for implementation details.

For variables that are referred by both the host process and the kernel, we

prefix them with either h or d to denote their actual residence on the host or the

device, respectively. For variables residing in the device’s memory system, we also

post-fix them with sm or gm to denote whether they are in the shared memory

or in the global memory. For those variables without any prefix or post-fix just

described, they are simply host/device local variables.

8.2.4 Queue-based Design

Here we present our novel queue-based design, which allows automatic, dy-

namic load balancing on the device without using expensive locks. In this design,

the host process sends tasks to the queue(s) without interrupting the execution of

the kernel. On the device, all TBs concurrently retrieve tasks from these shared
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queue(s). Since each task is executed by a single TB, we call this the TB-level task

execution scheme.

A queue object is described by the following variables.

• d tasks gm: an array of task objects.

• d n gm: the number of tasks ready to be dequeued from this queue.

• h written: the host’s copy of the accumulated number of tasks written to this

queue.

• d written gm: the device’s copy of the accumulated number of tasks written

to this queue.

• h consumed: the host’s copy of the accumulated number of tasks dequeued

by the device.

• d consumed gm: the device’s copy of the accumulated number of tasks de-

queued by the device.

At the beginning of a computation, all those variables are initialized to 0s.

The complete enqueue and dequeue procedures are described in Algorithm 3

and Algorithm 4, respectively. To enqueue tasks, the host first has to check whether

a queue is ready. In our scheme, we require that a queue is ready when it is empty,

which is identified by h consumed == h written. If a queue is not ready, the host

either waits until this queue becomes ready (single-queue case), or checks other

queues (multi-queue case). Otherwise, the host first places tasks in d tasks gm

starting from the starting location, and update d n gm to the number of tasks

enqueued. Then it waits on host write fence() to make sure that the previous writes

have completed on the device. After that, the host process updates h written, and

d written gm to inform the kernel that new tasks are available in the queue.
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Algorithm 3 TB-LEVEL HOST ENQUEUE

Require: n task objects tasks, n queue task queues q , each of a capacity of size, i next
queue to insert

Ensure: host process enqueues tasks into q

1: n remaining ← n

2: if n remaining > size then

3: n to write← size

4: else

5: n to write← n remaining

6: end if

7: repeat

8: if q[i].h consumed == q[i].h written then

9: q[i].d tasks gm← tasks[n− n remaining : n− n remaining + n to write− 1]
10: q[i].d n gm← n to write

11: host write fence()
12: q[i].h written← q[i].h written + n to write

13: q[i].d written gm← q[i].h written

14: i← (i + 1) (mod n queues)
15: n remaining ← n remaining − n to write

16: if n remaining > size then

17: n to write← size

18: else

19: n to write← n remaining

20: end if

21: else

22: i← (i + 1) (mod n queues)
23: end if

24: until n to write == 0
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Algorithm 4 TB-LEVEL DEVICE DEQUEUE

Require: n queue task queues q, i next queue to work on
Ensure: TB fetches a task object from q into task sm

1: done← false

2: if local id == 0 then

3: repeat

4: if q[i].d consumed gm == q[i].d written gm then

5: i← (i + 1) (mod n queues)
6: else

7: j ← fetch and add(q[i].d n gm,−1) − 1
8: if j ≥ 0 then

9: task sm← q[i].d tasks gm[j]
10: block write fence()
11: done← true

12: jj ← fetch and add(q[i].d consumed gm, 1)
13: if jj == q[i].d written gm then

14: q[i].h consumed← q[i].d consumed gm

15: i← (i + 1) (mod n queues)
16: end if

17: else

18: i← (i + 1) (mod n queues)
19: end if

20: end if

21: until done

22: end if

23: block barrier()
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On the device, each TB uses a single thread, i.e., the one of local id ==

0, to dequeue tasks. It first determines whether a queue is empty by checking

d consumed gm and d written gm. If a queue is empty, then it keeps checking until

this queue has tasks (single-queue case) or checks other queues (multi-queue case).

Otherwise, it first applies fetch-and-add on d n gm with −1. If the return value of

this atomic function is greater than 0, it means there is a valid task available in the

queue, and this TB can use this value as the index to retrieve a task from d tasks gm.

The thread waits on the memory fence until the retrieval of the task is finished. It

then applies fetch-and-add on d written gm with 1, and checks whether the task

just retrieved is the last task in the queue by comparing the return value of the

atomic function just called with d written gm. If yes, this thread is responsible for

updating h consumed to inform the host process that this queue is empty. Barrier

(Algorithm 4:Line 23) is used to make sure that all threads in a TB will read the

same task information from task sm after the dequeue procedure exits. The dequeue

procedure is a wait-free [75] approach, in the sense that in a fixed steps, a TB either

retrieves a task from a queue, or finds out that queue is empty.

To avoid data race, this scheme does not allow the host process to enqueue

tasks to an non-empty queue that is possibly being accessed by the kernel. This

seems to be a shortcoming of this scheme because enqueue and dequeue operations

cannot be carried out concurrently on a same queue. However, simply employing

multiple queues can efficiently solve this issue by overlapping enqueue with the

dequeue on different queues.

To determine when to signal the kernel to terminate, the host process has to

check whether all queues are empty after all computation tasks have been enqueued.

If it is true, the host process enqueues B HALT tasks to the queue, one for each

of the B concurrently active TBs on the device. TBs exit after getting HALT, and

eventually the kernel terminates.
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8.2.5 An Even Finer Task Execution Design

While the TB-level task execution scheme described in Section 8.2.4 is finer-

grained than the normal CUDA scheme (where a function is executed by the entire

device), it is not necessarily the optimal granularity for executing tasks. For exam-

ple, if each task only exposes limited data parallelism, which can be handled by a

few threads, using the TB-level task execution scheme simply wastes the compu-

tation power of other threads in the same TB. Therefore, we propose a warp-level

task execution scheme, where tasks are fetched and executed by individual warps on

the device. Since, on the GPU, the SM creates, manages, schedules, and executes

threads in warps, the warp-level task execution scheme perfectly matches this archi-

tectural feature, and therefore can potentially utilize the hardware more efficiently

than the TB-level scheme, and the normal CUDA programming paradigm. On the

other hand, using even finer-grained schemes, such as individual threads, will not

help. Since all threads within a warp share an instruction issue unit, they cannot

execute different codes concurrently. In fact, the most efficient execution on GPU

is that all threads of a warp take the same execution path [109].

Compared to the TB-level scheme, this warp-level scheme only involves

changes on the device side. Therefore, Algorithm 3 can be reused for task send-

ing in this warp-level scheme as well. The complete procedure for warp-level device

fetching task is described in Algorithm 5.

On the device, each warp uses a single thread, i.e., the one of warp lane == 0,

to fetch tasks. This thread first determines whether a queue has tasks available by

checking d consumed gm and d written gm. If a queue is empty, then it keeps

checking until the host process has inserted tasks into this queue (single-queue case)

or checks other queue (multi-queue case). Otherwise, it first applies fetch-and-add

on d n gm with −1. If the return value of this atomic function is greater than 0,

it means there is a valid task available in the queue, and this warp uses this value
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Algorithm 5 WARP-LEVEL DEVICE DEQUEUE

Require: n queue task queues q, i next queue to work on
Ensure: Warp fetches a task object from q into task sm

1: done← false

2: if warp lane == 0 then

3: repeat

4: if q[i].d consumed gm == q[i].d written gm then

5: i← (i + 1) (mod n queues)
6: else

7: j ← fetch and add(q[i].d n gm,−1) − 1
8: if j ≥ 0 then

9: task sm← q[i].d tasks gm[j]
10: warp write fence()
11: done← true

12: jj ← fetch and add(q[i].d consumed gm, 1)
13: if jj == q[i].d written gm then

14: q[i].h consumed← q[i].d consumed gm

15: i← (i + 1) (mod n queues)
16: end if

17: else

18: i← (i + 1) (mod n queues)
19: end if

20: end if

21: until done

22: end if
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as the index to retrieve a task from d tasks gm (Algorithm 5: Line 9). This thread

waits on the memory fence until the retrieval of the task is finished. It then checks

whether the task just retrieved was the last task in the queue (Algorithm 5: Line

12-13). If yes, this thread informs the host process that this queue is empty by

updating h consumed. Since threads in a warp execute in a synchronized way (no

explicit barriers needed), after the task fetching procedure finishes, all threads in a

warp see the same value in task sm. Like the TB-level scheme, this task fetching

procedure of the warp-level scheme is also wait-free.

8.3 Design for Multi-GPU Systems

How to efficiently utilize single-GPU systems for general purpose scientific

computing has been investigated for many applications. There are continuing efforts

to facilitate programming GPU clusters. The work in [48] employs Global Arrays

(GA) [104] to simplify the communications among GPUs. A memory consistency

model is proposed in [97] to enable a distributed shared memory system, which

consists of texture memory across multiple GPUs. Performance modeling of multi-

GPU systems and GPU clusters is studied in [125]. Results show that such modeling

techniques can be accurate for applications of a deterministic execution manner.

One of the major challenges of using multiple GPUs concurrently is the load

balancing issue. This is particularly true when the target applications exhibit irreg-

ular, unbalanced workload, or the computation is to be carried out on heterogeneous

platforms, e.g., consisting of both CPUs and GPUs, or a diversity of GPUs of vary-

ing capability. A static scheduling approach will not work since it lacks the ability to

automatically adapt to the application irregularity and system heterogeneity. One

possible approach is to decompose the computation into small chunks. Whenever

a GPU is free, it receives a chunk for processing. While this approach potentially

can provide better load balancing behavior than the static approach, the overall

performance of the program is heavily affected by the granularity of the chunks.
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Coarse-grained chunking may lead to load imbalance among GPUs, and therefore

hurt the performance. Generally speaking, using finer-grained chunks can achieve

better load balancing. When the workload in each chunk becomes smaller and

smaller, a single chunk may not be able to present enough parallelism to fully uti-

lize the GPU. However, most of the CUDA programming methods suggest that all

programmer-defined functions run sequentially on the GPU. Therefore, using these

fine-grained chunks could result in the underutilization of the GPUs, and degrade

the overall performance. This issue cannot be satisfactorily addressed by the current

GPU programming methodologies and techniques.

Our approach for solving these issues is to allow concurrent execution of fine-

grained tasks on multi-GPU systems. Specifically, in our approach, the granularity

of task execution is finer than what is currently supported in CUDA; the execu-

tion of a task only requires a subset of the GPU hardware resources. While some

tasks are being processed by part of the GPU resources, CPU can dispatch other

homogeneous/heterogeneous tasks to this GPU, and these tasks can be processed

by using other part of the GPU resources. All tasks can be processed concurrently

and independently, assuming there is no dependence among them.

In this section, we generalize our design for single-GPU systems and present a

fine-grained task-based execution framework for multi-GPU systems, where one such

system is a compute node equipped with multiple GPUs. This fine-grained approach

is particularly attractive because of the following reasons. First, it provides means

for achieving efficient, and dynamic load balancing on multi-GPU systems. While

scheduling fine-grained tasks enables good load balancing among multiple GPUs,

concurrent execution of multiple tasks on each single GPU solves the hardware

underutilization issue when tasks are small. Second, since our approach allows the

overlapping executions of homogeneous/heterogeneous tasks, the programmers will

have the flexibility to arrange their applications with fine-grained tasks and apply
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dataflow-like solutions to increase the efficiency of the program execution.

8.4 A Fine-grained Task-based Execution Framework

The multi-GPU systems discussed in this study can be viewed as illustrated

in Figure 8.3. In the system shown, multiple devices are connected to the host via

a PCIe bus. With the current CUDA environment, devices cannot exchange data

with each other directly. Instead, data movements across devices have to be done

by the host processes.

Figure 8.3: A PCIe Connected Multi-GPU System

To efficiently utilize such multi-GPU systems, we propose a fine-grained task-

based execution framework, which is demonstrated in Figure 8.4.

In our framework, for each host process-device pair, one or more programmer-

created local task containers are used to enable the host-device communications when

a kernel is running on the device. These task containers can be of the form of regular

queues for in-order processing, or priority queues to support tasks with different

priorities2. Such local task containers are only accessible by the corresponding host

process and the device. The computation to be carried out on a multi-GPU system

2 In this study, we only show the designs with the regular FIFO queues.
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Figure 8.4: Fine-grained Task-based Execution Framework for Multi-GPU Sys-
tems

is first decomposed into many fine-grained tasks, which are kept in a programmer-

created global task container. All individual host processes can fetch/send tasks

from/to this global task container. Once a host process finds out that its own local

task container has free space and some tasks in the global task container are ready

to start, it moves a number of such tasks from the global task container to its own

local task container, and informs the device the availability of new tasks.

On each device, a persistent kernel is launched at the beginning of the com-

putation. This kernel fetches tasks from the local task container(s), and executes

them by groups of threads, which we call task execution units (TEUs). Note that the

processing of each task is carried out by a single TEU, which can be at a granularity

finer than the entire device. Multiple tasks can be fetched and processed by differ-

ent TEUs (on a same device) concurrently and independently, assuming there is no
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dependence among them. Moreover, task sending (by the host process) and task

fetching (by the TEUs) can happen at the same time, as illustrated in Figure 8.5.

One of the challenges to implement this device-scope fine-grained execution scheme

Figure 8.5: General Form of Fine-grained Execution on a Single GPU

is to provide a correct and efficient host-device communication mechanism when a

kernel is running on the device. As demonstrated in Section 8.2, by judiciously uti-

lizing the GPU’s architectural features and the mechanisms provided by the CUDA

environment, such as the multiple memory spaces, and the asynchronous concurrent

execution, this mechanism can be achieved for host-device communications.

8.5 Dynamic Load Balancing Design for Multi-GPU Systems

Based on our fine-grained task-based framework described in Section 8.4, a

design for dynamically balancing workload on multi-GPU systems is quite straight-

forward. The design follows the basic structure illustrated in Figure 8.4. Specifically,

the work to be processed with a multi-GPU system is decomposed into fine-grained

tasks, which are to be executed by individual warps. When a local task container

becomes empty, the corresponding host process fills it with certain number of fine-

grained tasks retrieved from the global task container. Here we assume that the

dependencies among tasks have been taken care of by the host processes, and all

117



tasks in the local task containers can be executed independently by devices. Since

all host processes share a host memory space, the orchestrations among them can be

accomplished with regular programming methodologies and techniques for shared-

memory systems.

8.6 Related Work

Load balance is a critical issue for parallel processing. However, in the liter-

ature, there are few studies addressing this load balancing issue on GPUs. The load

imbalance issue of graphics problems was discussed in [51, 101], and authors observed

that it is of fundamental importance for high performance graphics algorithm im-

plementations on GPUs. Several static and dynamic load balancing strategies were

evaluated in [28] on GPUs for an octree partitioning problem. The experimental re-

sults show that synchronization can be very expensive on GPUs, and non-blocking

mechanisms or other methods that can take advantage of the GPU architectural

features should be used for the purpose of dynamic load balancing. Our work dif-

fers from this study in several ways. First, in the former study, the load balancing

strategies were carried out solely on the GPU; the CPU cannot interact with the

GPU during the execution. Second, the former study only investigated single-GPU

systems. Our work is performed on both single- and multi-GPU systems, and can

be easily extended to GPU clusters.

Scheduling task execution on GPU-enabled systems and other heterogeneous

platforms has been investigated in a few studies. A runtime scheduler is presented

for situations where individual kernels cannot fully utilize GPUs [69]. This runtime

intercepts the stream of kernel invocations to an GPU, and makes scheduling de-

cisions and merges the workload from multiple kernels and creates a super-kernel

based on them. Experiments with both micro-benchmarks and a near neighbor

search program show the proposed runtime can improve the hardware utilization

when multiple kernels can fit simultaneously on the hardware. However, the merge
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has to be performed statically, and thus dynamic load balance cannot be guaranteed.

Recently, researchers have begun to investigate how to exploit heterogeneous plat-

forms with the concept of tasks. Merge [93] is such a programming framework pro-

posed for heterogeneous multi-core systems. It employs a library-based method to

automatically distribute computation across the underlying heterogeneous comput-

ing devices. The Merge programming model abstracts the underlying architectures

and requires additional information from the programmer for dispatch decisions.

A prototyping implementation shows performance gains on both a heterogeneous

platform and a homogeneous platform for a set of benchmarks. STARPU [11] is

another framework for task scheduling on heterogeneous platforms, in which hints,

including the performance models of tasks, can be given to guide the scheduling

policies. It features a uniform execution model for both CPUs and GPUs, a high-

level framework to design scheduling policies and a library that automates data

transfers. Another similar effort is reported in [86], where schemes for efficient au-

tomatic task distribution between CPU and GPU are proposed and tested with a

real-time system. Our work is orthogonal to prior efforts in that our solution ex-

hibits excellent dynamic load balance for GPU-enabled systems. It also enables the

GPU to exchange information with the CPU during execution, which further en-

ables these platforms to understand the runtime behavior of the underlying devices,

and improve the performance of the system.
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Chapter 9

IMPLEMENTATION AND EVALUATION

In this chapter, we first describe implementation issues of our framework.

We then present the experimental results for both the micro-benchmarks and a

molecular dynamics (MD) application.

9.1 Implementation

We implemented our fine-grained task-based execution framework on a sys-

tem equipped with 1 quad-core AMD Phenom II X4 940 processors and 4 NVIDIA

Tesla C1060 GPUs. The system is running 64-bit Ubuntu version 8.10, with NVIDIA

driver version 190.10. CUDA Toolkit version 2.3 ,CUDA SDK version 2.3, and GCC

version 4.3.2 were used in the development. The above system provides all necessary

features to implement our framework.

To utilize the asynchronous concurrent execution feature, CUDA requires

using different, nonzero CUDA streams, where a stream is basically a sequence of

commands that are performed in order on the device, and the zero stream is the

default stream in CUDA. So, in our implementation, we use one stream for kernel

launching, another stream for performing queue operations.

While CUDA does provide a TB-scope memory fence function,

threadfence block(), it does not differentiate between stores and loads. In our im-

plementations, it was used as store fences, block write fence(). On the other hand,

CUDA does not have a warp-scope memory fence function like warp write fence().

120



Therefore, in our implementation, we simply use the TB-scope memory fence func-

tion, threadfence block() for this purpose. CUDA also provides a function to syn-

chronize all threads in a TB, syncthreads(), which behaves as both a regular bar-

rier and also a memory fence in a TB. In our implementations, we took advantage of

this and eliminated redundant operations. host write fence() was implemented with

CUDA event methods. For two consecutive asynchronous memory operation issued

by the host (to the device’s global memory), a combination of an event recording

and an event synchronizing inserted between these two memory operations ensures

that the second operation will not start unless the first one finishes on the device.

9.2 Micro-benchmarks

Here we report benchmarking results for major components performed in

our framework, such as, host-device data transfer, synchronizations, atomic instruc-

tions, and the complete enqueue/dequeue operations. Performance measurements

of these individual components help us understand how our designs work with the

real applications.

Host-device data transfer

Every time the host process performs an enqueue operation, or the kernel

writes the mapped host memory, it involves host-device data transfers. The host-

device interface equipped in our system is PCIe 2.0 × 8. We measured the time

to transfer contiguous data between the host and the device across this interface

using the pinned memory. Since queue operations only update objects of small

sizes, i.e., tasks and index variables, we conducted the test for sizes from 8 bytes to

4KB. Figure 9.1 shows measured transfer times for transfers initialized by the host

process, i.e., using the regular synchronous copies (Memcpy) with the zero stream,

asynchronous copies (MemcpyAsync) with the zero stream, and asynchronous copies

with a nonzero stream, and the transfers initialized by the kernel, i.e., the mapped
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Figure 9.1: CPU-GPU Data Transfer Time

host memory, where H->D and D->H indicate the transfer from the host to the

device, or the reverse, respectively. Note that one device thread was used to perform

transfers from the device to the mapped host memory. From the figure, it is clear

that using a nonzero stream to perform asynchronous copies is much expensive,

compared to both synchronous copies and asynchronous copies performed with the

zero stream, i.e., 5×-10× slower. Without exposing to the CUDA internal, we do

not really understand why such operation is so costly. On the other hand, with the

current CUDA programming environment, using nonzero streams is the only way

to achieve the asynchronous concurrent execution.

For transfers initialized by the host process, the transfer time changes slowly

in the above data range due to the high bandwidth, i.e., 4GB/s. So, if the host-

device data transfer is inevitable, combining multiple data accesses into one single

transaction is highly recommended. In fact, in our implementation of the enqueue
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operation, we actually update d n gm and d tasks gm with a single host-device

transaction.

On the other hand, since there is no mechanism for a kernel to copy a con-

tiguous memory region, it has to perform such copy with assignments on basic data

types. Therefore, the transfer time is quite linearly proportional to the size of data,

compared to transfers issued by the host process.

Barrier and fence

Barrier and memory fence functions are used in our design to ensure the

correctness of the operations. In this test, we made all threads (on the device)

calling a specific barrier or fence function a large number of times, and measured

the average completion time. For the fence function, we also measured the case that

only one thread in each TB makes the call, which emulates the scenario in dequeue

operations.

Figure 9.2 shows the results for these functions with a TB size of 128. We ob-

served that the completion time of these functions tends to keep constant regardless

the number of TBs launched. Especially, the fence functions are very efficient; it

takes a same amount of time to complete for the case when called by a single thread

in a TB (annotated with ”one T/B” in the figure), and for the case when called by

all threads in a TB (annotated with ”all Ts/B”). Similar results were observed for

various TB sizes.

Atomic instructions

Atomic functions are used in our design to guarantee correct dequeue oper-

ations on the device. In this benchmark, one thread in each TB performs a large

number of fetch-and-add function on a device’s memory address in the global mem-

ory. Experimental results show that atomic functions are being executed serially,
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Figure 9.2: GPU Barrier and Fence Functions (128Ts/B)

and the average completion time is 327ns. Experiments with other atomic functions

show similar results.

Task queue operations

We conducted experiments to show the average overhead of each enqueue

and dequeue operation for our framework. For the enqueue operation, this was

measured by calling an enqueue operation many times without running a kernel on

the device. In experiments, each enqueue operation places 120 tasks in the queue.

For the dequeue operations, we first pre-loaded queues with a large number of tasks,

and then we launched a kernel that only retrieves tasks from queues, without per-

forming any real work. The average enqueue operation is 114.3µs, and the average

dequeue operation is 0.4µs when the dequeue kernel was run with 120 TBs, each of

128 threads, for both the TB-level scheme and the warp-level scheme. Comparing
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these numbers with Figure 9.1, it is clear that host-device data transfers account

for the major overhead in enqueue operations. For example, 2 PCIe transactions

in enqueue operations need approximately 110µs to finish, which is about 95% of

the overall enqueue time. While this seems a very high overhead, by overlapping

enqueue operations with the computation on devices, solutions based on our frame-

work actually outperform several alternatives, for a MD application, as shown in

Section 9.3,

We also conducted experiments for enqueue operations with varied number of

tasks in each operation. We observed that inserting more tasks with one operation

only incurs negligible extra overhead, when a single queue can hold these tasks. On

the other hand, the average dequeue time is reduced when more TBs are used on the

device. For example, when increasing the number of TBs from 16 to 120, the average

dequeue time decreases from 0.7µs to 0.4µs, which is about the time to complete

an atomic function. This indicates that our dequeue algorithm actually enables

concurrent accesses to the shared queue from all TBs, with very small overhead.

9.3 Case study: Molecular Dynamics

The MD systems used in our study is synthetic unbalanced systems. Such a

synthetic unbalanced system is built by following a Gaussian distribution of helium

atoms in a 3D space. The system has a higher density in the center than in periphery.

The density decreases from the center to the periphery following a Gaussian curve.

Therefore the force contributions for the atoms at the periphery are much less than

those for the atoms close to the center. An example of such system is illustrated in

Figure 9.3. The force between atoms is calculated using both electrostatic potential

and Lennard-Jones potential [55].

The reason for using synthetic systems is two-fold: (1) synthetic systems can

isolate the load balancing issue from other complex facts exhibiting in the real life

systems, and therefore facilitates the evaluations and analyses of different solutions,
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Figure 9.3: Example Synthetic MD System

(2) it is very difficult to find real life examples where a particular atom distribution

is constant as the simulated system size scales up, and therefore it makes very hard

to objectively evaluate different solutions with different system sizes.

For each system, the N atom positions are stored in a linear array A. Specif-

ically, the 3D space is first decomposed in boxes of size equal to the cutoff ra-

dius. Then, atoms in each individual box are stored into the array contiguously.

This data layout reduces the thread divergence as atoms processed in a warp are

most likely close to each other in the physical system, and, with high probability,

they will follow the same control path, which is the most efficient execution way

on GPUs [109]. Therefore, this data layout is efficient for processing with single-

GPU systems. However, due to the effect of cutoff radius, the systems built with

non-uniform distributions exhibit irregular, unbalanced computation workload for

different boxes. Consequently, using this data layout with multi-GPU systems can
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be challenging, in terms of the load balancing and the absolute performance.

9.3.1 Solution Implementations

We implement solutions based on our fine-grained task-based execution

framework, using both the TB-level scheme and the warp-level scheme. We also

implement other load balance techniques based on the conventional CUDA pro-

gramming method.

Solution STATIC

This solution statically divides A into P contiguous regions of equal size,

where P is the number of devices used. Each device is responsible for comput-

ing forces for atoms within a region, where each TB is responsible for evaluating

128 atoms, and the number of TBs is determined by the size of the region. The

computation of a time step finishes when all devices finishes their regions.

This solution reduces the thread divergence as atoms processed in a TB will

follow most likely the same control path, which is the most efficient execution way

on GPUs. Due to this feature this method is expected to be one of the fasted

method for single GPU, however partitioning at multi-GPU level is very difficult

for systems of unbalanced workload in the space. An uneven portioning has to

be performed as the cost of distance calculation and force calculation has to be

proportionally taken in account. This solution is designed to take advantage of

single GPU computing sacrificing multi-GPU load balancing. We use it in a multi-

GPU configuration equally dividing A into P contiguous regions, knowing in advance

that it will have poor load balance behavior. The objective is to use it as a baseline

to compare other load-balancing schemes in the multi-GPU experiments.
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Solution RANDOM

This solution randomly permutes the elements in A before the simulation, and

after every certain amount of time steps in the simulation. After the permutation,

the workload is distributed as Solution STATIC; the array A is equally partitioned

into P contiguous regions, one for each device.

By discarding the locality information of atoms, this solution ensures almost

perfect load balance among multiple devices, since now each atom in the array

has a (nearly) equal probability to exert a force with all other atoms in the array.

This technique is used in parallel implementations of state-of-the-art biological MD

programs such as CHARMM [24] and GROMOS [33]. However, when applied to

the GPU codes, it introduces the problem of thread divergence inside a warp for

simulating systems of non-uniform atom distributions, as now atoms with a lot of

force interactions are mixed with atoms with few force interactions.

The randomization procedure is performed on the host, and we do not include

its execution time into the overall computation time. Note that randomization

procedure has a computational complexity Θ(N) and therefore can be fairly used

in atom-decomposition MD computation which has complexity Θ(N2).

Solution CHUNKING

This solution is a dynamic approach that uses fine-grained workload to dy-

namically balance load across multiple devices. Specifically, the array A is decom-

posed into many data chunks of equal atoms. Whenever a host process finds out

that the corresponding device is free (on kernel running on the device), it assigns the

force computation of atoms within a data chunk to the device, by launching a kernel

with the data chunk information. The host process waits until this kernel completes

the computation and the device becomes free again, then it launches another kernel

with a new data chunk.
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This solution is designed to take advantage of both good load balancing

among multiple GPUs and thread convergence. Since a device only receives a rel-

atively small workload after it finishes the current one, this approach potentially

provides better load balancing than Solution STATIC, for unbalanced workload.

Since the performance of chunking is affected by the chunk size, we use an empiri-

cally optimal size of 15, 360 atoms/chunk (120 TBs × 128 atoms) for this solution,

which achieves the best absolute performance among all examined chunk sizes.

Solution TB-TASK

This solution is an approach that employs our fine-grained task-based exe-

cution framework; it is based on the TB-level scheme (presented in Section 8.2.4).

In this solution, each task is the force evaluation of 128 atoms (stored contiguously

in A) with all atoms in the system, and it is to be executed by a single TB. The

simulation of each time step is decomposed into tasks, which are kept in the global

task container. On each device, two local task containers are used to overlap the

host task sending with the device task fetching. Each local task container holds up

to 20 tasks. Whenever a task container of a device becomes empty, the correspond-

ing host process tries to fetch as much as 20 tasks from the global task container

at a time, and sends them to the device with a single task sending procedure. The

kernel is run with 120 TBs, each of 128 threads. Note these configuration numbers

are determined empirically.

Solution WARP-TASK

This solution is also built on our fine-grained task-based framework. Unlike

Solution TB-TASK, this solution is based on the warp-level scheme (presented in

Section 8.2.5). To accommodate this granularity change of TEUs, the granularity

of each task is accordingly decreased to the force evaluation of 32 atoms (stored

contiguously in A) with all atoms in the system. The kernel is run with 120 TBs,
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each of 128 threads, i.e., 512 warps on a single device. Like Solution TB-TASK,

these configuration numbers are determined empirically.

Note that all 5 solutions use the same device function to perform the force

computation, which is based on the atom-decomposition [132] technique. Also,

before timing the computation, the array A is already available on devices. In

this way, we can ensure that all performance differences are only due to the load

balancing mechanisms employed.

9.4 Results and Discussions

We conduct our experiments on the 4-GPU system described in Section 9.1.

For each run of the simulation, we use the average runtime in the first 10 time steps

as the metric for the absolute performance (the runtime differences among these

10 time steps are trivial). We first evaluate all solutions presented in Section 9.3.1

with identical input data from the unbalanced system described in Section 9.3, for

both the single-GPU scenario and the multi-GPU scenario. We then investigate the

effect of different atom distributions.

9.4.1 Single-GPU Scenario

Figure 9.4 shows the normalized speedup of the average runtime per time step

over Solution STATIC, with respect to different system sizes, when only 1 GPU is

used in the computation.

As discussed in Section 9.3.1, unlike other approaches, Solution RANDOM

does not exploit the spatial locality in the system, and thus causes severe thread

divergences within a TB. For example, for a 512K atoms system, the CUDA profiler

reports that Solution RANDOM occurs 49% more thread divergences than Solution

STATIC, and its average runtime per time step is 74% slower than Solution STATIC.
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Figure 9.4: Relative Speedup over Solution STATIC versus System Size (1 GPU)

Due to the overhead of a large number of kernel invocations and subsequent

synchronizations, Solution CHUNKING cannot achieve better performance than

Solution STATIC on a single-GPU system, although evaluating a larger data chunk

with each kernel invocation can alleviate such overhead.

Solutions based on our framework, i.e, Solution TB-TASK and Solution

WARP-TASK, consistently outperform other approaches even when running on a

single GPU. For example,for a 512K atoms system, the average runtime per time

step is 84.1s and 80.7s for Solution TB-TASK and Solution WARP-TASK, respec-

tively. Compared to 93.6s for Solution STATIC, the performance improvement is

about 11.3% and 16.0%, respectively.

Regarding this significant performance difference, our first guess was that

Solution STATIC has to launch many more TBs than solutions based on our frame-

work, therefore incurring in a large overhead. However, we experimentally measured

that the extra overhead is relatively small. For example, when using a simple kernel,
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launching it with 4, 000 TBs only incurs extra 26µs overhead, compared to launching

it with 120 TBs, which does not justify the huge performance difference. Therefore,

the only reason lies in how efficient CUDA can schedule TBs of different workload.

To investigate this issue, we create several workload patterns to simulate un-

balanced load. To do this, we set up a balanced MD system of 512K atom in which

all atoms are uniformly distributed1. Since the computation for each atom now

involves equal amount of work, TBs consisting of computation of same amount of

atoms should also take a similar amount of time to finish. Based on this balanced

system, we create several computations following the patterns illustrated in Fig-

ure 9.5. In the figure, P0, · · ·, P4, represent systems of specific workload patterns.

All patterns consist of a same number of blocks. In Pattern P0, each block contains

128 atoms, which is the workload for a TB (Solution STATIC), or in a task (Solution

TB-TASK). Pattern P0 is actually the balanced system, and all blocks are of equal

workload. For the rest of patterns, some blocks are labelled as nullified. Whenever

a TB reads such a block, it either exits (Solution STATIC), or fetches another task

immediately (Solution TB-TASK). In Solution STATIC, the CUDA scheduler is no-

tified that a TB has completed and another TB is scheduled. In Solution TB-TASK,

the persistent TB fetches another task from the execution queue.

Figure 9.6 shows the average runtime per time step for Solution STATIC

and Solution TB-TASK, for different workload patterns. To our surprise the CUDA

TB scheduler does not handle properly unbalanced execution of TBs. When the

workload is balanced among all data blocks, i.e., Pattern P0, Solution TB-TASK

is slightly worse than Solution STATIC due to the overhead associated with queue

operations. However, for Pattern P1, P3, and P4, while Solution TB-TASK achieved

reduced runtime, which is proportional to the reduction of the overall workload,

1 We use the balanced system only to understand this behavior, we then return to
the unbalanced Gaussian distributed system on the next section on multi-GPUs.
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Figure 9.5: Workload Patterns

Solution STATIC failed to attain a similar reduction. For example, for Pattern P4,

which implies a reduction of 75% workload over P0, Solution TB-TASK and Solution

STATIC achieved runtime reduction of 74.5%, and 48.4%, respectively. Although

not shown here, we also studied this issue with Solution WARP-TASK, and the

results were very similar to Solution TB-TASK.

Figure 9.6: Runtime for Different Workload Patterns
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To ensure that this observation is not only specific to our MD code, we con-

ducted similar experiments with matrixMul, a NVIDIA’s implementation of matrix

multiplication included in CUDA SDK. The results also confirm our observation.

This indicates that, when workload is unbalanced distributed among TBs, CUDA

cannot schedule new TBs immediately when some TBs terminate, while the solu-

tions based on our framework can utilize the hardware more efficiently.

9.4.2 Multi-GPU Scenario

Figure 9.7 shows the normalized speedup of the average runtime per time step

over Solution STATIC, with respect to different system sizes, when all 4 GPUs are

used in the computation. When the system size is small (32K), Solution RANDOM

achieves the best performance (slightly over Solution STATIC), while other solu-

tions incur relatively significant overhead associated multiple kernel launching (So-

lution CHUNKING), or queue operations (Solution TB-TASK and Solution WARP-

TASK).

Figure 9.7: Relative Speedup over Solution STATIC versus System Size (4 GPUs)
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As expected, when the system size becomes larger, we observe that solutions

incorporated with dynamic load balance mechanisms remarkably outperform Solu-

tion STATIC. For example, for a system size of 512K atoms, Solution RANDOM,

CHUNKING, TB-TASK, and WARP-TASK are 1.24×, 2.02×, 2.45×, and 2.53×

faster than Solution STATIC, respectively. Especially, for these large system sizes,

Solution TB-TASK and WARP-TASK achieve the top performance among all so-

lutions, i.e., they are constantly about 1.2× faster than Solution CHUNKING, the

next best approach.

Figure 9.8 shows the speedup with respect to the number of GPUs, for the

simulation of a 512K atoms system. From the plot, we observe that, except Solution

STATIC, other 4 approaches achieve nearly linearly speedup when more GPUs are

used (they are so close that virtually there is only one curve visible in the figure for

Solution RANDOM, CHUNKING, TB-TASK, and WARP-TASK).

Figure 9.8: Speedup versus Number of GPUs

This observation is well explained by Figure 9.9, which shows the runtime

of individual GPUs, when 4 GPUs are used in the computation of a 512K system.
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Figure 9.9: Dynamic Load on GPUs (512K Atoms)

Particularly, such timing information is presented for each individual GPU (labelled

with G0-G3). In addition, we decompose the runtime into CPU time and GPU time.

CPU time denotes the time spent on the corresponding host process for the host-

device data transfer, position update, and communication with other host processes.

GPU time denotes the time spent on the device for the force computation. In this

way, the load balancing behavior is illustrated with the GPU times spent on different

devices.

As illustrated, for Solution STATIC, the load among GPUs is extremely

unbalanced. In contrast, other 4 approaches achieve good load balance. However,

their absolute times vary. While Solution RANDOM is effective in terms of load

balancing, it is 1.9x slower than Solution TB-TASK for large systems, i.e., 256K

and up. As explained earlier, this is because it does not exploit the spatial locality,

and therefore significantly increases the overall runtime.

Solution CHUNKING balances the load among GPUs by assigning fine-

grained data chunks with different kernel invocations. However, it does not solve

136



the load imbalance issue within each data chunk; in a kernel invocation (for a data

chunk), some TBs may need a longer time to finish than others, due to the unbal-

anced computation workload among them. Also it involves the overhead of kernel

invocations and following synchronizations. One may argue that using larger data

chunks can reduce such overhead. We investigated the effect of different sizes of data

chunks, and discovered that using small data chunks, i.e., each of 15,360 (120x128)

atoms, actually achieved the best performance; using larger data chunks introduced

load imbalance among devices, and using smaller data chunks simply underutilized

the computation power of devices.

In contrast, the solutions based on our fine-grained task-based framework

both exploit the spatial locality, and achieves dynamic load balancing on individual

devices, and among devices. Also, it is very easy to integrate our queue-based

solution with existing CUDA code. For example, given a MD CUDA code and our

framework module, a first version of a fine-grained task-based MD code was obtained

within 2 hours.

On the other hand, since Solution WARP-TASK employs the execution

scheme that optimally matches the GPU’s architectural feature, we expected that it

could outperform Solution TB-TASK remarkably, in terms of absolute performance

and load balancing, We do see that Solution WARP-TASK achieves better load bal-

ancing than Solution TB-TASK. However, regarding the absolute performance, it

only exhibits limited improvements over Solution TB-TASK, i.e., around 5%, which

is below our initial expectation. A further examination of the force computation

function reveals that, due to the specific algorithm used in our MD simulation, So-

lution WARP-TASK implies many more memory operations (of the same order of

magnitude of N , the number of atoms in the system) to the array A, than Solution

TB-TASK does. These extra memory operations offset the majority of the benefits

of using a warp-level solution.
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9.4.3 Effect of Different Distributions

So far, we have demonstrated that our fine-grained task-based execution

framework can improve the performance of a MD application, for a particular atom

distribution. But, will this framework also work for systems of other atom distribu-

tions? In this section, we evaluate the dynamic load balancing solutions based on

our framework for the MD application with different workload distributions. In our

experiments, we use synthetic systems of helium atoms, which are built by following

4 different atom distributions in a 3D space.

• Uniform distribution arranges atoms uniformly distributed in the system.

• Sphere distribution has a higher density in the center than in periphery 2.

The density decreases from the center to the periphery following a Gaussian

curve.

• Equal-sized cluster distribution first partitions the system into clusters of

equal number of atoms, where the centers of clusters are randomly generated.

Then each cluster is built by following Sphere distribution.

• Random-sized cluster distribution also generates clusters of atoms. Unlike

the Equal-size cluster distribution, for each cluster, both the center and the

number of atoms in this cluster are randomly generated for the Random-size

cluster distribution.

2 Although the systems used in Section 9.4.1 and Section 9.4.2 share certain sim-
ilarities with the systems built with Sphere distribution, they have different
physical characteristics, e.g., atom layout, average distance among atoms, tem-
perature, pressure, etc. Therefore, the results for the systems of Sphere distri-
butions shown in this section cannot be simply compared to the results reported
previously.
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Figure 9.10 shows example systems of these distributions. It is clear that

systems built with last three atom distributions have irregular computational load

in the space.

(a) Uniform (b) Sphere

(c) Equal-size cluster (d) Random-size cluster

Figure 9.10: Example Synthetic Systems of Different Atom Distributions

We conduct the experiments on the 4-GPU system, where all 4 GPUs are

used in the simulations.

We first investigate how different solutions behave for systems of a particular

size, i.e., 256K-atom. Figure 9.11, 9.12, 9.13, and 9.14 show the average runtime

per time step for all solutions (without Solution RANDOM) on each individual
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GPU (labelled with G0-G3). Again, we decompose the runtime into CPU time and

GPU time, and thus the load balancing behavior is illustrated with the GPU times

spent on different devices. Solution RANDOM does achieve excellent load balancing

among GPUs, however, it is usually much slower than other solutions. Therefore

we will only describe its behaviors in text.
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Figure 9.11: Runtime of Uniform Distribution

From these figures, it is clear that, in our experiments, the systems built

with non-uniform atom distributions require much more computation time than the

system built with the uniform atom distribution. This is because that with our

particular Uniform distribution, there are only a few atoms in the space determined

by the cutoff radius. However, for other distributions, in average, each atom may

interact with up to hundreds of other atoms. Given the force computation is the most

expensive part in the MD simulation, the number of force computations involved

in various systems causes huge differences among them, in terms of the absolute

performance.
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Figure 9.12: Runtime of Sphere Distribution

For the Uniform distribution, Solution STATIC achieves the best absolute

performance and load balancing. It virtually balances the workload among GPUs

perfectly with few overhead, while dynamic solutions suffer from the additional over-

head due to the runtime scheduling. As we can see from Figure 9.11, this additional

overhead is quite noticeable when the GPU time is small. However, for non-uniform

distributed workload, dynamic solutions show their strengths, in terms of load bal-

ancing. Especially, for Solution WARP-TASK, the difference of GPU time among

GPUs is within 3%, while such difference is up to 9% for Solution CHUNKING.

Regarding the absolute performance, our fine-grained task-based solutions achieve

up to 1.9× speedup over Solution STATIC. Both Solution WARP-TASK and Solu-

tion TB-TASK outperform Solution CHUNKING. Particularly, for Solution WARP-

TASK, we see improvements of 11%-22% over Solution CHUNKING for different

non-uniform distributions.

Not shown in the figure, Solution RANDOM also balances the workload

among GPUs perfectly. However, because mixed atom data cause serious thread
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Figure 9.13: Runtime of Equal-size Cluster Distribution

divergence on each device, this solution is the slowest among all solutions, e.g., 6.9x

slower than Solution STATIC for the Equal-size cluster distribution.

Figure 9.15, 9.16, 9.17, and 9.18 show the relative speedup of the average

runtime per time step of all solutions (using 4 GPUs) over Solution STATIC, with

respect to system sizes. Again, Solution RANDOM is not shown here due to its

low performance. For the Uniform distribution, Solution STATIC still achieves the

best absolute performance. However, other dynamic solutions reach comparable

performance for large system sizes. This is because that the additional runtime

scheduling overhead becomes relatively trivial, compared to the GPU time, when

the system size increases. For other non-uniform distributions, our fine-grained

task-based solutions achieve much better performance than Solution STATIC and

Solution CHUNKING when large systems (i.e., 128K-atom and up) are used3. For all

non-uniform distributions, Solution WARP-TASK constantly outperforms Solution

3 Except for the Equal-size cluster distribution at the size of 128K-atom, where
all dynamic solutions are worse than Solution STATIC.
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Figure 9.14: Runtime of Random-size Cluster Distribution

TB-TASK, for system sizes up to 512K-atom. However, the performance improve-

ment becomes less significant when the system size increases. This in fact confirms

our previous reasoning on why Solution WARP-TASK only exhibits limited benefits

over Solution TB-TASK; when the system becomes large, the execution of those

extra memory operations in Solution WARP-TASK will constitute a considerable

portion of the overall runtime. In fact, when the system size reaches 1024K-atom,

Solution TB-TASK achieves a similar or even better performance than Solution

WARP-TASK. Note that the issue of extra memory operations is not directly re-

lated to our fine-grained task-based approach, but due to the particular algorithm

used in our experiments. For algorithms/applications that can be parallelized with-

out introducing significant amount of extra overhead, we expect that our warp-level

execution scheme can generally outdo the TB-level execution scheme.

9.5 Summary

In this chapter, we first describe the platform used in our experiments and im-

plementation issues of our fine-grained task-based framework. We then present the
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Figure 9.15: Relative Speedup: Uniform Distribution

benchmarking results for basic operations used in our framework. As a case study, a

MD application with a particular unbalanced atom distribution is used to evaluate

the effectiveness of our design. Experimental results with a single-GPU configura-

tion show that our scheme can utilize the hardware more efficiently than the CUDA

scheduler, for unbalanced problems. For multi-GPU configurations, our solution

achieves nearly linear speedup, load balance, and significant performance improve-

ment over alternative implementations based on the canonical CUDA paradigm. To

investigate the effect of atom distributions to our framework, we also experiment

with systems built with different distributions. The results show that, for non-

uniform distributed workload, our solutions achieve better performance, in terms of

both dynamic load balance and absolute performance, than other alternative ap-

proaches. Also, performance analyses reveal that, when utilizing this framework,

the interaction between the task execution granularity and the particular algorithm

can lead to significant impact upon the overall performance.
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Figure 9.16: Relative Speedup: Sphere Distribution

Figure 9.17: Relative Speedup: Equal-size Cluster Distribution

145



Figure 9.18: Relative Speedup: Random-size Cluster Distribution
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Chapter 10

CONCLUSION

10.1 Summary

Due to the Power wall, the Memory Wall, and the ILP Wall, major processor

manufacturers have turned to multi-core/many-core designs, in order to continue

benefiting from the Moore’s law. However, programming many-core systems is a new

area for the software community; the majority of software community was very used

to the idea of sequential programming, or at most working with very limited number

of threads. The goal of this dissertation therefore is to use case studies to understand

issues in designing and developing scalable, high-performance scientific computing

algorithms for many-core architectures, get in-depth experience on programming

and optimizing applications on those architectures, and then provide insights into

implementation effort and performance behavior of optimizations and algorithmic

properties for many-core architectures.

In this dissertation, we investigate the following two problem/architecture

combinations as case studies,

• Optimizing the Fast Fourier Transform for IBM Cyclops-64

Fast Fourier Transform (FFT) is an efficient algorithm to compute the discrete

Fourier transform (DFT) and its inverse. FFT is of great use in many scientific

and engineering domains.

We design and implement scalable high-performance parallel 1D and 2D FFT

algorithms for the C64 architecture. We analyze the optimization challenges
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and opportunities for FFT problems, and identify domain-specific features of

the target problems and match them well with some key many-core architec-

ture features. The impacts of various optimization techniques and effectiveness

of the target architecture are addressed quantitatively.

We propose a performance model that estimates the performance of parallel

FFT algorithms for an abstract many-core architecture, which captures generic

features and parameters of several real many-core architectures. We derive the

performance model based on cost functions for three main components of an

execution: the memory accesses, the computation, and the synchronization.

We evaluate our performance model on the C64 architecture. Experimental

results from both simulations and the executions on the real hardware have

verified the effectiveness of our performance model; our model can predict the

performance trend accurately.

• Exploring Fine-grained Task-based Execution on Graphics Process-

ing Unit-enabled Systems

The computational power provided by many-core graphics processing units

(GPUs) has been exploited in many applications. The programming tech-

niques currently employed on these GPUs are not sufficient to address prob-

lems exhibiting irregular, and unbalanced workload. The problem is exacer-

bated when trying to effectively exploit multiple GPUs concurrently, which

are commonly available in many modern systems.

To solve the above problem, we propose a fine-grained, task-based execu-

tion framework for GPU-enabled systems. The framework allows computation

tasks to be executed at a finer granularity than what is supported in existing

GPU APIs such as NVIDIA CUDA. This fine-grained approach provides means

for achieving efficient, and dynamic load balancing on GPU-enabled systems.
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While scheduling fine-grained tasks enables good load balancing among mul-

tiple GPUs, concurrent execution of multiple tasks on each single GPU solves

the hardware underutilization issue when tasks are small. Also, since this ap-

proach allows the overlapping executions of homogeneous/heterogeneous tasks,

the programmers will have the flexibility to arrange their applications with

fine-grained tasks and apply dataflow-like solutions to increase the efficiency

of the program execution.

We implement our framework with CUDA. We evaluate the performance of

the basic operations of this implementation with micro-benchmarks. We eval-

uate the solutions based on our framework with a MD application. Experi-

mental results with a single-GPU configuration show that our solutions can

utilize the hardware more efficiently than the CUDA scheduler, for unbal-

anced problems. For multi-GPU configurations, our solutions achieve nearly

linear speedup, load balance, and significant performance improvement over

alternative implementations based on the canonical CUDA paradigm.

10.2 Future Work

While the FFT optimization techniques presented in Chapter 4 could be

helpful for developing other applications on C64-like many-core architectures, there

are some important issues that can be considered as natural extensions to the cur-

rent work. Firstly, although the absolute performance obtained on C64 is impres-

sive, the efficiency of the current 1D FFT implementation on C64 is only 25%

(20.72Gflops/80Gflops), compared to 76.39% (5.5Gflops/7.2Gflops) on Pentium 4

processor [49, 79]. More work has to be done to analyzes the program behavior on

C64 and further improve the performance. Secondly, one of the architecture features

of C64 has not been fully explored is the fast SPM associated with the corresponding

thread unit. One possible way to employ SPM is to use it as an extended register
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file, since it has very low access latency (2 cycles for load, 1 cycle for write). As

we discussed in Chapter 4, using large work units may introduce serious register

spilling, and then degrade the overall performance. Preliminary experiments, with

explicit use of the SPM as a buffer to keep the intermediate computing results,

showed promising results [157]. Another issue is to study larger FFT problem sizes

when data cannot be fully stored in on-chip memories. In this case, data move-

ment in the memory hierarchy, and computation have to be orchestrated carefully

to overlap the communication with the computation.

The FFT performance model presented in Chapter 5 is an attempt to quan-

titatively analyze the interaction between existing algorithms and the emerging

many-core architectures. The model can be further improved in several dimension

as discussed below. As we mentioned in Section 5.3, the analysis of off-chip GM

accesses is a natural extension. This is particularly important for the study of ex-

plicit data movement between levels of the memory hierarchy, which is used in many

high performance FFT algorithms. It will be interesting to include analyses of such

data movement, and thus verify the effectiveness of the existing FFT algorithms for

many-core architectures. This performance model can be incorporated into an FFT

computational framework, as a search engine to find suitable algorithms and opti-

mal parameters for a given FFT problem. For example, as shown in Section 5.4, the

performance model could identify the optimal number of PEs to be used for a given

problem. Unlike an empirical search approach, by examining the properties of the

algorithms and the architecture parameters, this performance model can potentially

provide faster and more accurate solutions. Last, although our analysis presented

in Chapter 5 is focused on the FFT algorithms, it will be interesting to investigate

how the general methodology can be applied to other problems of statically defined

communication and computation patterns, like matrix operations.
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In our current design of the GPU task-based execution framework, to en-

sure the dependencies among tasks, we have to manually schedule the execution of

tasks on the CPU side, according to their dependencies. An efficient mechanism

to automatically enforce dependencies among tasks will greatly facilitate the design

and development of fine-grained data-driven or event-driven applications. Another

possible feature is to enable GPU to dispatch tasks to the CPU. The task could be

remote data accesses, which cannot be performed by the GPU, or certain compu-

tations, which are too expensive on the GPU. These feature could further increase

the applicability of our framework. Other future work includes extending the cur-

rent design for GPU clusters, which have been introduced to several scientific sites.

In this case, MPI, GA, or other alternatives should be integrated into our frame-

work to take care of the distributed memory configuration. The recently announced

NVIDIA Fermi architecture supports concurrent execution of multiple kernels. It

would be interesting to evaluate the effectiveness of our framework with Fermi for

imbalanced workload.
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